Mapping the Results of Geographically Weighted Regression

Mapping the Results of Geographically Weighted Regression(PDF)

Mapping the Results of Geographically Weighted Regression

Jeremy Mennis Department of Geography and Urban Studies, Temple University, 1115 West Berks Street, 309 Gladfelter Hall, Philadelphia, PA 19066, USA. Email: jmennis@temple.edu

 

Geographically weighted regression (GWR) is a local spatial statistical technique for exploring spatial nonstationarity. Previous approaches to mapping the results of GWR have primarily employed an equal step classification and sequential no-hue colour scheme for choropleth mapping of parameter estimates. This cartographic approach may hinder the exploration of spatial nonstationarity by inadequately illustrating the spatial distribution of the sign, magnitude, and significance of the influence of each explanatory variable on the dependent variable. Approaches for improving mapping of the results of GWR are illustrated using a case study analysis of population density–median home value relationships in Philadelphia, Pennsylvania, USA. These approaches employ data classification schemes informed by the (nonspatial) data distribution, diverging colour schemes, and bivariate choropleth mapping.

INTRODUCTION Local forms of spatial analysis have recently gained in prominence. For example, local adaptations have been developed for conventional summary statistics (Brunsdon et al., 2002) as well as for the analysis of spatial dependency in both quantitative (Anselin, 1995; Ord and Getis, 1995) and categorical data (Boots, 2003). Because local spatial statistics often generate georeferenced data, maps and other graphics are typically used to present, and aid in the interpretation of, local spatial statistical results. And because these local statistics are generally exploratory, as opposed to confirmatory, in nature, they have much in common theoretically with recent research in cartography focusing on the use of maps and statistical graphics for data exploration (e.g. MacEachren and Ganter, 1990; Andrienko et al., 2001; Carr et al., 2005). Few cartographers, however, have explicitly addressed the adaptation of conventional mapping techniques for local spatial statistics. Geographically weighted regression (GWR) is a local spatial statistical technique used to analyze spatial nonstationarity, defined as when the measurement of relationships among variables differs from location to location (Fotheringham et al., 2002) Unlike conventional regression, which produces a single regression equation to summarize global relationships among the explanatory and dependent variables, GWR generates spatial data that express the spatial variation in the relationships among variables. Maps generated from these data play a key role in exploring and interpreting spatial nonstationarity. A number of recent publications have demonstrated the analytical utility of GWR for investigating a variety of topical areas, including climatology (Brunsdon et al., 2001), urban poverty (Longley and Tobon, 2004), environmental justice (Mennis and Jordan, 2005), and the ecological inference problem (Calvo and Escolar, 2003). However, a standard approach for mapping the results of GWR has not yet been developed. This may be due to the relatively recent development of the technique itself, but is also likely a result of the complications in displaying the results of GWR. Note that each GWR analysis can produce a voluminous amount of spatial data, including multiple georeferenced variables. Some of these variables can be considered ratio data while other variables can be interpreted as nominal. Numeric variables may be highly skewed and range over positive and negative values. The purpose of this research is to review previous approaches to mapping the results of GWR and suggest methods to improve upon them. I focus on GWR as applied to the analysis of areal data, as opposed to data taken as samples of a continuous surface, as the vast majority of GWR research has been applied to socioeconomic data aggregated to census or other spatial units. As a case study, a number of mapping approaches are used to interpret the results of a GWR analysis of median home value in Philadelphia, Pennsylvania, USA using 2000 US Bureau of the Census tract level data. The Cartographic Journal Vol. 43 No. 2 pp. 171–179 July 2006 # The British Cartographic Society 2006 DOI: 10.1179/000870406X114658

GEOGRAPHICALLY WEIGHTED REGRESSION

Because readers may not be familiar with the details of GWR, a brief explanation of it is offered here. The conventional regression equation can be expressed as ^yi~b0z X k bkxikzei (1) where ^yi is the estimated value of the dependent variable for observation i, b0 is the intercept, bk is the parameter estimate for variable k, xik is the value of the kth variable for i, and ei is the error term. Instead of calibrating a single regression equation, GWR generates a separate regression equation for each observation. Each equation is calibrated using a different weighting of the observations contained in the data set. Each GWR equation may be expressed as y^i~b0ðui ,viÞz X k bkðui ,viÞxikzei (2) where ðui ,viÞ captures the coordinate location of i (Fotheringham et al., 1998). The assumption is that observations nearby one another have a greater influence on one another’s parameter estimates than observations farther apart. The weight assigned to each observation is based on a distance decay function centred on observation i. In the case of areal data, the distance between observations is calculated as the distance between polygon centroids. The distance decay function, which may take a variety of forms, is modified by a bandwidth setting at which distance the weight rapidly approaches zero. The bandwidth may be manually chosen by the analyst or optimized using an algorithm that seeks to minimize a cross-validation score, given as CV~ Xn i~1 yi{y^i=i  2 (3) where n is the number of observations, and observation i is omitted from the calculation so that in areas of sparse observations the model is not calibrated solely on i. Alternatively, the bandwidth may be chosen by minimizing the Akaike Information Criteria (AIC) score, give as AICc~2n loge (^s)zn loge (2p)zn nztr(S) n{2{tr(S)   (4) where tr(S) is the trace of the hat matrix. The AIC method has the advantage of taking into account the fact that the degrees of freedom may vary among models centred on different observations. In addition, the user may choose a fixed bandwidth that is used for every observation or a variable bandwidth that expands in areas of sparse observations and shrinks in areas of dense observations (Charlton et al., no date). Because the regression equation is calibrated independently for each observation, a separate parameter estimate, t-value, and goodness-of-fit is calculated for each observation. These values can thus be mapped, allowing the analyst to visually interpret the spatial distribution of the nature and strength of the relationships among explanatory and dependent variables. For more information on the theory and practical application of GWR the reader is referred to (Fotheringham et al., 2002)

CHALLENGES TO MAPPING THE RESULTS OF GWR

A survey of research incorporating GWR reveals that maps play a central role in interpreting GWR results. However, there are a number of issues that have led these maps to obscure the GWR results as much as illuminate them. One issue is that the spatial distribution of the parameter estimates must be presented in concert with the distribution of significance, as indicated by a t-value, in order to yield meaningful interpretation of the results. Some researchers have chosen to map only the parameter estimates and not associated t-values (Fotheringham et al., 1998; Huang and Leung, 2002; Lee, 2004), which can be very misleading as it may visually emphasize the areas of highest (or lowest, if the relationship is primarily negative) parameter estimation, regardless of the significance of the estimate. Thus, one may get the impression that the areas with the highest parameter estimates exhibit the strongest relationship between the explanatory and dependent variables, when those estimates may not, in fact, be significant. Clearly, maps of the spatial distribution of the parameter estimates must be accompanied by associated t-value data if spatial nonstationarity is to be interpreted effectively by the map reader. A second issue concerns data classification. The equal step approach, where the data range is divided into classes of equal extent (Dent, 1999), appears to be the most common data classification technique for mapping the distribution of parameter estimates and t-values generated from GWR (e.g. Longley and Tobon, 2004). It should be noted, however, except in cases where exogenous classification criteria are used, the choice of data classification scheme for quantitative data is typically informed by the non-spatial data distribution (Evans, 1977; Dent, 1999). The equal step classification is most appropriate for uniformly distributed data, which in the case of GWRgenerated parameter estimates would occur when the frequencies of the estimates were approximately the same over the range of the estimates. While possible, this is certainly unlikely. Other classification schemes are likely to be more appropriate, such as the use of standard deviation classification for normally distributed data, or the use of optimal methods for maximizing within-class homogeneity (e.g. Coulson, 1987; Cromley, 1996). In addition, the data classification for t-values should account for certain exogenous criteria that are of importance to the variable being mapped (Evans, 1977), namely the threshold values that distinguish parameter estimates that are significant from those that are not. When a class interval extends across a significance threshold to encompass both significant and not significant t-values within one class, as it may be using an equal step classification scheme, it becomes impossible to visually distinguish significant parameter estimates from those that are not significant on the map. A third issue is the choice of colour scheme. Many GWR researchers have employed a sequential no-hue colour 172 The Cartographic Journal scheme, which assigns a series of class intervals increasing shades of grey (Brewer, 1994) for choropleth mapping of both parameter estimates and t-values (Fotheringham et al., 1998; Longley and Tobon, 2004; Lee, 2004). Such a colour scheme gives the impression of a gradation of increasing influence (i.e. from a lighter to darker shade of grey) of the explanatory variable on the dependent variable. In cases where the parameter estimates are all of the same sign, the sequential approach may be appropriate. However, this colour scheme is problematic in cases where the parameter estimate is positive in some locations and negative in others (which is not an unusual occurrence, e.g. Huang and Leung, 2002; Lee, 2004; Mennis and Jordan, 2005), as it ignores the fact that the sign of the parameter estimate indicates an importance difference in the nature of the relationship of the explanatory with the dependent variable. In this case, a diverging colour scheme (Brewer, 1994; 1996), which indicates the magnitude of departure from a midpoint value (i.e. zero in the case of distinguishing positive from negative relationships), is most appropriate. A fourth issue is the sheer number of individual maps required to report both the parameter estimates and tvalues for each explanatory variable. This is problematic in terms of cost of map production (e.g. physical space in a journal publication) and the cognitive effort in map comprehension required from the map reader. Choropleth mapping has been extended to two variables simultaneously, as in a bivariate choropleth map (Olson, 1975). Combining parameter estimates and t-values in a single choropleth map would reduce the volume of maps necessary for exploring the results of GWR.

CASE STUDY: GWR OF HOME VALUE IN PHILADELPHIA,

PA The case study concerns the GWR of median owneroccupied home value (US dollars) in Philadelphia, Pennsylvania, USA using population density (people km–2) as the explanatory variable. These 2000 data were acquired from the US Bureau of the Census at the tract level. Note that the purpose of the case study is not to demonstrate anything novel about home values in Philadelphia per se, but rather to show and compare different strategies for mapping the results of GWR. The focus is on maps of parameter estimates and t-values as these are the most commonly reported maps in research using GWR. The use of only one explanatory variable in the case study keeps the volume of GWR results to a manageable level while generating interesting patterns of spatial nonstationarity that can be used to illustrate the benefits and pitfalls of various mapping strategies. Of the 381 tracts in Philadelphia, 24 were removed from the analysis because they represented very sparsely populated or unpopulated areas (i.e. parks, airports, and industrial land uses), leaving 357 tracts for use in the analysis. A map of Philadelphia neighbourhoods relevant to the case study is presented in Figure 1. Descriptive statistics and choropleth maps of the variables used in the analysis are presented in Table 1 and Figure 2, respectively. The results of a conventional linear regression of home value are reported in Table 2. The model indicates that population density is negatively and significantly related to home value; as home values increase, population density decreases. Note, however, that the model is poorly specified, explaining only approximately 6% of the variation in home value. Reasons for this poor specification will be made clear in the GWR. The data were entered into the GWR software using a variable bandwidth setting that minimizes the AIC. The variable bandwidth approach was chosen to account for the spatial variation in the size of the tracts, and hence the density of tract centroids. As noted above, the most Figure 1. Important neighbourhoods of Philadelphia, Pennsylvania in the context of the case study, overlain with tract boundaries Table 1. Descriptive statistics Variable Minimum Maximum Mean Standard deviation Home value (US dollars) 9 999 843 800 75 860 70 362 Population density (people km–2) 120 21 168 6 618 3 853 Table 2. Conventional regression of home value Independent variable Coefficient t-value Constant –106 524.30*** –14.87 Population density –4.63*** –4.96 *** Significance ,0.005, N 5 357, Adjusted R2 5 0.062. Mapping Geographically Weighted Regression 173 common approach to presenting the results of GWR is to generate choropleth maps of the parameter estimates using a sequential no-hue colour scheme and an equal-step classification. Figure 3a presents such a map of the population density parameter estimate. One can immediately see that this map is problematic, as the imposition of this colour scheme and classification ignore relevant variations in the data that should be brought to the attention of the viewer. First, the sequential colour scheme suggests that the influence of population density on home value increases monotonically. In fact, in some tracts this relationship is negative and in others it is positive. Perhaps even more troubling is that the majority of the mapped area is occupied by a single class that includes both positive and negative parameter estimates (i.e. the class interval –7 to 12). Thus, it is impossible to tell within which areas the population density–home value relationship is positive versus negative. Finally, because no information on the Figure 2. Choropleth maps of a median home value and b population density by census tract in Philadelphia, PA Figure 3. Choropleth maps of a parameter estimates and b t-values by census tract for the GWR of median home value using an equal step data classification and a sequential no-hue colour scheme for each map 174 The Cartographic Journal distribution of t-values is provided, one cannot detect the areas in which the relationship between explanatory and dependent variables is significant. This last problem can be amended simply by creating a map of t-values (Figure 3a), presented here also using the conventional sequential nohue colour scheme and equal step classification, though similar problems regarding classification and choice of colour scheme apply. Figure 4a presents a map that addresses the classification and colour scheme problems present in the choropleth map of parameter estimates presented in Figure 3a. In Figure 4a, the classification is based generally on a standard deviation classification scheme, as the data approach a normal distribution. In addition, manual adjustments to the statistically-derived data classification scheme are made to facilitate map interpretation (Monmonier, 1982). The class breaks were shifted to distinguish positive from negative parameter estimates, and, because the range of negative parameter estimates is greater than the range of positive parameter estimates, the interval boundaries were set to allow the direct comparison of positive and negative parameter estimates of equivalent magnitude. Thus, of five classes, only one contains all the tracts with positive parameter estimates. A diverging colour scheme was also employed to differentiate negative from positive parameter estimates by hue, while expressing increasing magnitudes of the estimates using a combination of saturation and value. Unlike Figure 3a, Figure 4a clearly shows that the areas of positive relationship between population density and home value are largely limited to the greater Center City and University City neighbourhoods, as well as nearby Frankford. A negative population density–home value relationship of equal magnitude is evident in the remainder of the city, with the exception of the Roxborough and Chestnut Hill neighbourhoods, within which stronger negative relationships occur. Figure 4b presents a map that addresses the classification and colour scheme problems present in Figure 3b. Figure 4b has a classification scheme based on commonly used significance thresholds: 90, 95, 99, and 99.5%. A sequential colour scheme is used to represent different levels of significance. Unlike in Figure 3b, Figure 4b clearly indicates that in the majority of Philadelphia the relationship between population density and home value is, in fact, not significant at the 90% confidence level. It is significant primarily in University City, western Center City, Girard Estates, and a number of neighbourhoods in the northwestern part of the city. Clearly, this significance information is key to interpreting Figure 4a, as Figure 4a appears to suggest an equivalency between Center City and Frankford in the relationship of population density with home value. Figure 4b, however, clearly shows that in Frankford the relationship between the two variables is not significant at the 90% confidence level and, within those areas where the relationship between the variables is significant, the magnitude of the significance varies. Some parts of those areas show a significant relationship at the 99.5% confidence level (e.g. Chestnut Hill and Roxborough), while others only meet the 90% confidence level threshold (e.g. East Falls and West Oak Lane). The maps presented in Figure 4 are a marked improvement over those presented in Figure 3, as they allow for a much more accurate assessment of which areas have positive and negative relationships of the explanatory variable with the dependent variable, the magnitude of those relationships, and the significance of those relationships. However, given a regression with many explanatory variables, as opposed to just the one used in this case study, many maps Figure 4. Choropleth maps of a parameter estimates and b t-values by census tract for the GWR of median home value. In the parameter estimate map, a modified standard deviation data classification and a diverging colour scheme is used whereas in the t-value map, an exogenous data classification based on commonly accepted significance thresholds and a sequential no-hue colour scheme is used Mapping Geographically Weighted Regression 175 are required to communicate this information, as each explanatory variable demands two separate maps – one for the parameter estimate and one for the t-value. Figure 5 offers a potential solution to this problem by encoding certain key characteristics of Figures 4a and 4b in a single area-class map. Here, tracts are classified according to their relationship between the explanatory and dependent variable, characterized as positively significant, negatively significant, and not significant (at the 90% confidence level). These classes are treated as nominal data and assigned varying lightness levels of grey in the map in a qualitative colour scheme that is intended to differentiate among classes without implying rank or quantity (Brewer, 1994). Note that the linework of the tract boundaries has been removed to reduce the visual complexity of the map. The advantage of this mapping approach is that one can easily see qualitative differences among areas in the sign of the relationship between the explanatory and dependent variable, as well as distinguish between areas exhibiting a significant versus not significant relationship. Another advantage is that a grey-scale, as opposed to colour, map may be used. Of course, the disadvantage of this mapping approach is that potentially interesting patterns may not be observed regarding the magnitude of the relationship between the explanatory and dependent variable as contained in the actual parameter estimate values, as well as in the magnitude of the significance. Bringing colour back into the map allows for a compromise between Figures 4a and 5 as contained in a single map, presented in Figure 6a. Here, a map showing the parameter estimates in a manner similar to that of 3a is used, except that a significance threshold (at 90% confidence level) is used to mask out all those areas in which the relationship between the explanatory and dependent variables is not significant. Here, it is implied that distinguishing between positive and negative parameter estimates (and associated t-values) in these areas is unnecessary. These areas are given a neutral grey tone and their linework for the tract boundaries is removed, the Figure 5. An area-class map of positively and negatively significant and not significant t-values, for the GWR of median home value Figure 6. Choropleth maps simultaneously displaying both the magnitude and significance of the parameter estimate by census tract: a a mask is applied to those tracts with a t-value with a significance less than 90%; b both the parameter estimate and associated significance are incorporated in a bivariate data classification and colour scheme 176 The Cartographic Journal assumption being that these areas are of less interest to an analyst than those areas that are significant. Figure 6a can also be modified by using a bivariate colour scheme to simultaneously depict both the magnitude of the parameter estimate and the magnitude of the significance. In Figure 6b, a 464 class colour matrix is used to depict various combinations of parameter estimate and significance. A diverging colour scheme using two different hues is used to map the parameter estimate values, as in Figure 6a, because they range from positive to negative values. A sequential scheme using saturation is used to map significance, where increased saturation indicates higher significance, because the sign of the relationship is already captured by the hue in the vertical axis of the matrix. Thus, the map may be considered to use a diverging-sequential, bivariate colour scheme. Because colours are only assigned to tracts with a significant relationship between the explanatory and dependent variables (at greater than or equal to 90% confidence), the matrix’s class intervals are not continuous along the horizontal axis. All tracts that do not exhibit a significant relationship between population density and home value (i.e. fall within the vertical class partition in the centre of the matrix) are assigned a neutral grey colour. Note also that the matrix is sparsely populated (i.e. there are a number of ‘empty’ cells) because the t-value and parameter estimate always share the same sign.

DISCUSSION AND CONCLUSION

Although the purpose of the case study concerns cartographic methodology and not the substantive topic of home values in Philadelphia, it is worth taking a moment to discuss the substantive results as a means to evaluate the various mapping approaches. First, the reason that the conventional regression was not specified properly is explained, at least in part, by the spatial nonstationarity indicated by the GWR. Clearly, a linear regression model that is global in nature will not be able to accurately characterize the relationship between explanatory and dependent variables when the relationship is positive in some portions of the study region and negative in others, as Figure 4a indicates. The negative relationship between population density and home value is perhaps one that could be expected; expensive homes are likely to occur in sparsely populated areas where single-family homes sit on large lots. This is indeed the case in certain Philadelphia neighbourhoods at the urban periphery, such as Roxborough, Chestnut Hill, and Overbrook, as Figures 4, 5, and 6 show. The positive relationship between population density and home value exhibited in University City and western Center City is probably related to their historic roots as centres of wealth, high-end commercial activity, and higher education within the city core. Both neighbourhoods have maintained densely populated residential areas even as many nearby working-class neighbourhoods in North, South, and West Philadelphia have lost population in recent years. Population decline is associated with housing abandonment and marginal home appreciation (or even decline), thus creating the local positive relationship between population density and home value for University City and western Center City that can now be observed in Figures 4, 5, and 6. This research demonstrates that the conventional approach of using an equal step classification and sequential no-hue colour scheme for choropleth mapping of GWRgenerated parameter estimates is clearly inadequate. As Figure 3a shows, such a map is not only uninformative but can be downright misleading, even when paired with another map of t-values as an indicator of significance. Adjustments to the data classification and colour scheme to improve the cartographic representation of the sign, magnitude, and significance of parameter estimates, as in Figure 4, offer an improvement in interpreting the GWR results, but two maps are required for the representation of each explanatory variable. The advantage of Figure 5 is that, because it is an areaclass map with only three classes, it appears relatively uncluttered and is therefore easy to visually interpret. Yet it effectively communicates the basic pattern of spatial nonstationarity as captured by the GWR. On the downside, however, it does not show the spatial distribution of the magnitude of the parameter estimates. The maps contained in Figure 6 are unique in that they convey spatial information on both the magnitude and significance of the parameter estimates in a single map. Because Figure 6a employs a simple significance threshold, whereas Figure 6b maps the distribution of significance, Figure 6b contains more information. For example, Figure 6b clearly shows that some tracts in western Center City have a much higher significance than others, a pattern that cannot be observed in Figure 6a. And one can see that in Overbrook population density has a highly significant, negative relationship with home value, though the influence of the explanatory variable on the dependent variable is relatively marginal compared with its influence in other areas, such as Chestnut Hill. However, the bivariate colour scheme used in Figure 6b can be difficult to visually interpret, particularly given the fact that additional colour assignments are needed for representing observations which are classified as not significant or which have no data. And while knowing the spatial distribution of significance values is certainly important, significance is typically treated as a threshold. For these reasons, I advocate the mapping approach taken in Figure 6a as a good rule-of-thumb for mapping the results of GWR. Or, an analyst may choose to use a map like that presented in Figure 5, if this reduced level of information communication is deemed sufficient. It is worth noting that while the case study focuses on mapping the parameter estimate and t-value for GWR using a single explanatory variable, most GWR applications will have multiple explanatory variables. In such a situation, GWR may be used to interpret maps of parameter estimates and/or t-values to determine within which region(s) specific explanatory variables are particularly influential. Such an analysis demands a comparison of choropleth maps in a series, for which design criteria may differ from that used for a single map (Brewer and Pickle, 2002) Mennis and Jordan (2005) facilitate such a comparison by using Mapping Geographically Weighted Regression 177 area-class maps like that presented in Figure 5, thus supporting map comparison by standardizing maps according to a significance threshold applied uniformly to all explanatory variables. However, if choropleth mapping of parameter estimates is used to indicate the magnitude of influence of each explanatory variable, each parameter estimate must be standardized before being mapped (i.e. the standardized b). Likewise, standardization of the data classification and colour scheme across all maps in the series will facilitate map comparison, even if some maps contain data for only a subset of the classification range (Brewer and Pickle, 2002), It is also worth noting that not all parameter estimates and attached significance values necessarily need to be mapped in order to generate an effective visualization of the overall quality and most relevant characteristics of a GWR model. A software package devoted to automated mapping of GWR results would be a useful tool for assisting researchers in developing informative and useful maps for exploring spatial nonstationarity. Such a software package could ingest the output from GWR analysis and offer automated intelligent rules for cartographic display, based on the data classification, colour scheme, and bivariate mapping approaches described above. In addition, a software package whose purpose is to support the exploration of the results of GWR ought to include characteristics that have been developed for exploratory data analysis in other cartographic contexts, such as the use of small multiples for the visualization of many variables (Pickle et al., 1996), dynamically linked maps and other graphical displays (MacEachren et al., 1999), and modes of interactivity (Crampton, 2002). For example, consider the significance threshold of 90% confidence used in Figure 6a to mask out tracts in which the relationship between population density and home value is considered not significant. A slider bar or other interactive device could facilitate the exploration of the effect of changing the threshold significance value on the interpretation of spatial nonstationarity. Interactive devices for dynamically altering class breaks for parameter estimates and/or significance values would be useful in exploring the maps presented Figures 4 and 6, as well as in transforming the t-values to nominal data in Figure 5. It would be useful to provide choropleth maps of the explanatory and dependent variables, linked to the choropleth maps of the analogous parameter estimates and tvalues so that panning, zooming, selection and other interactions in one map would be effective in all maps. In addition, dynamically linking statistical graphics, such as scatter plots and parallel coordinate plots (e.g. Gahegan et al., 2002), to the maps of parameter estimates and significance would facilitate the exploration of the multivariate ‘signatures’ associated with regions of homogeneity regarding the relationship between explanatory and dependent variables. ACKNOWLEDGEMENTS The choice of colour schemes used in this research were informed by ColorBrewer, an online mapping tool for choosing colour schemes for choropleth maps (Harrower and Brewer, 2003) and Mapping Census 2000: The Geography of US Diversity (Brewer and Suchan, 2001).

REFERENCES

Andrienko, N., Andrienko, G., Savinov, A., Voss, H., and Wettschereck, D. (2001). ‘Exploratory analysis of spatial data using interactive maps and data mining’, Cartography and Geographic Information Science, 28, 151–165. Anselin, L. (1995). ‘Local indicators of spatial association – LISA’, Geographical Analysis, 27, 93–115. Boots, B. (2003). ‘Developing local measures of spatial association for categorical data’, Journal of Geographical Systems, 5, 139– 160. Brewer, C. (1994). ‘Color use guidelines for mapping and visualization’, in Visualization in Modern Cartography, ed. by MacEachren, A. and Taylor, D.R.F., p. 123–147, Elsevier, New York. Brewer, C. A. (1996). ‘Guidelines for selecting colors for diverging schemes on maps’, The Cartographic Journal, 33, 79–86. Brewer, C. A. and Pickle, L. (2002). ‘Evaluation of methods for classifying epidemiological data on choropleth maps in a series’, Annals of the Association of American Geographers, 92, 662– 681. Brewer, C. A. and Suchan, T. A. (2001). Mapping Census 2000: The Geography of US Diversity. US Census Bureau Special Report, Series CENSR/01-1. US Government Printing Office. Washington DC. Brunsdon, C., Fotheringham, A. S. and Charlton, M. E. (2002), ‘Geographically weighted summary statistics: a framework for localized exploratory data analysis’, Computers, Environment and Urban Systems, 501–524. Brunsdon, C., McClatchey, J. and Unwin, D. (2001). ‘Spatial variations in the average rainfall–altitude relationships in Great Britain: an approach using geographically weighted regression’, International Journal of Climatology, 21, 455–466. Calvo, C. and Escolar, M. (2003). ‘The local voter: a geographically weighted approach to ecological inference’, American Journal of Political Science, 47, 189–204. Carr, D. B., White, D., and MacEachren, A. M. (2005). ‘Conditioned choropleth maps and hypothesis generation’, Annals of the Association of American Geographers, 95, 32–53. Charlton, M., Fotheringham, S. and Brunsdon, C. (no date). Geographically Weighted Regression Version 2.x, User’s Manual and Installation Guide. Coulson, M. R. C. (1987). ‘In the matter of class intervals for choropleth maps: with particular reference to the work of George Jenks’, Cartographica, 24, 16–39. Crampton, J.W. (2002). ‘Interactivity types in geographic visualization’, Cartography and Geographic Information Science, 29, 85–98. Cromley, R. G. (1996). ‘A comparison of optimal classification strategies for choropleth displays of spatially aggregated data’, International Journal of Geographical Information Science, 10, 405–424. Dent, B. D. (1999). Cartography: Thematic Map Design, Fifth Edition, WCB/McGraw Hill, Boston. Evans, I. A. (1977). ‘Selection of class intervals’, Transactions of the Institute of British Geographers, New Series, 2, 98–124. Fotheringham, A. S., Brunsdon, C. and Charlton, M. E. (1998). ‘Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis’. Environment and Planning A, 30, 1905–1927. Fotheringham, A. S., Brunsdon, C., and Charlton, M. E. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Wiley, Chichester. Gahegan, M., Takatsuka, M., Wheeler, M. and Hardisty, F. (2002). ‘Introducing GeoVISTA Studio: an integrated suite of visualization and computational methods for exploration and knowledge construction in geography’, Computers, Environment and Urban Systems, 26, 267–292. 178 The Cartographic Journal Harrower, M. A. and Brewer, C. A. (2003). ‘ColorBrewer.org: an online tool for selecting colour schemes for maps’, The Cartographic Journal, 40, 27–37. Huang, Y. and Leung, Y. (2002). ‘Analyzing regional industrialization in Jiangsu province using geographically weighted regression’. Journal of Geographical Systems, 4, 233–249. Lee, S.-I. (2004). ‘Spatial data analysis for the US regional income convergence, 1969–1999: a critical appraisal of b-convergence’, Journal of the Korean Geographical Society, 39. Longley, P. A. and Tobon, C. (2004). ‘Spatial dependence and heterogeneity in patterns of hardship: an intra-urban analysis’, Annals of the Association of American Geographers, 94, 503– 519. MacEachren, A. M. and Ganter, J. H. (1990). ‘A pattern identification approach to cartographic visualization’, Cartographica, 27, 64–81. MacEachren, A. M., Wachowicz, M., Edsall, R., Haug, D., and Masters, R. (1999). ‘Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods’, International Journal of Geographical Information Science, 13, 311–334. Mennis, J. and Jordan, L. (2005). ‘The distribution of environmental equity: exploring spatial nonstationarity in multivariate models of air toxic releases’, Annals of the Association of American Geographers, 95, 249–268. Monmonier, M.S. (1982). ‘Flat laxity, optimization, and rounding in the selection of class intervals’, Cartographica, 19, 16–26. Olson, J. (1975). ‘Spectrally encoded two-variable maps’, Annals of the Association of American Geographers, 71, 259–276. Ord, J. K. and Getis, A. (1995). ‘Local spatial autocorrelation statistics: distributional issues and an application’. Geographical Analysis, 27, 286–306. Pickle, L. W., Mingle, M., Jones, G. K., and White, A. A. (1996). Atlas of United States Mortality, US National Center for Health Statistics, Hyattsville, Maryland, USA. Mapping Geographically Weighted Regression 179

 

發表於 關鍵GIS文獻 | 發表迴響

FOCUS SECTION: CRITICAL QUANTITATIVE GEOGRAPHIES 1: BEYOND THE CRITICAL/ANALYTICAL BINARY

Quantitative Revolution(PDF)

FOCUS SECTION: CRITICAL QUANTITATIVE GEOGRAPHIES 1: BEYOND THE CRITICAL/ANALYTICAL BINARY

Quantitative Revolution 2: The Critical (Re)Turn

 

 

Mei-Po Kwan The Ohio State University

Tim Schwanen University of Oxford and Utrecht University

 

Although many have questioned the adequacy of quantitative methods for addressing issues of concern in critical geographies, such as social justice and inequality, many have argued that quantification can potentially make rich contributions to understanding and addressing these issues. In light of the recent attempts to reassert the critical potential and positive role of quantitative geography, we suggest in this introductory article for the Focus Section that the antagonism between critical and quantitative geographies is not beneficial to the discipline. We highlight some promising developments in modern quantitative geography and reflect on the ways in which the critical–quantitative binary can be at least partially eclipsed. We emphasize that knowledge in quantitative methods is essential for deciphering and challenging regressive political agendas, now often supported by numbers and quantitative analysis. Quantitative geography, when integrated with a critical sensibility and used appropriately, can be a powerful tool for fostering progressive social and political change.

 

Key Words: critical geographies, the critical turn, quantitative geography, quantitative revolution.

Aunque muchos cuestionan la conveniencia de utilizar m´etodos cuantitativos para enfrentar problemas que interesan a las geograf´ıas cr´ıticas, tales como justicia social y desigualdad, otros arguyen que potencialmente la cuantificaci ´on puede hacer valiosas contribuciones para entender y abocar esos asuntos. A la luz de intentos recientes que reafirman el potencial cr´ıtico y papel positivo de la geograf´ıa cuantitativista contempor´anea, en este art´ıculo introductorio para la Secci ´on Focal se sugiere que el antagonismo entre las geograf´ıas cr´ıticas y la cuantitativista no es ben´efico para la disciplina. Al respecto, destacamos algunos desarrollos promisorios de la geograf´ıa cuantitativista contempor´anea, y reflexionamos sobre la manera como el binario cr´ıtica–cuantitativa podr´ıa romperse, por lo menos en parte. Destacamos que el conocimiento de m´etodos cuantitativos es esencial para descifrar y retar agendas pol´ıticas regresivas, que ahora con frecuencia se apoyan en n´umeros y an´alisis cuantitativos. Cuando a la geograf´ıa cuantitativista se la integra con sensibilidad cr´ıtica, y se utiliza con propiedad, puede convertirse en una herramienta poderosa que coadyuve al cambio social y pol´ıtico progresista. Palabras clave: geografı´as crı´ticas, giro crı´tico, geografı´a cuantitativista, revolucio´n cuantitativa.

The Professional Geographer, 61(3) 2009, pages 283–291 C  Copyright 2009 by Association of American Geographers. Initial submission, November 2007; revised submission, October 2008; final acceptance, November 2008. Published by Taylor & Francis Group, LLC. Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 284 Volume 61, Number 3, August 2009

 

Quantitative geography emerged as a new practice in geography in the 1950s and 1960s through a movement now commonly referred to as the quantitative revolution, which sought to transform the discipline into a scientific pursuit through quantitative methods and, for certain practitioners, positivist logic.1 Since the early 1970s, however, relevance and epistemological premises of quantitative geography have been challenged through several rounds of critiques by critical geographers, especially humanist, Marxist, feminist, poststructuralist, postcolonial, antiracist, and queer geographers. As critical perspectives and qualitative approaches have become widely adopted in contemporary geography, the use of quantitative approaches to address a progressive research agenda is often treated with suspicion or even contempt by many in the current intellectual milieu of the discipline (Brown 2007). Adding to the disdain for quantitative geography is the patent decline in interest in quantitative methods among geography students in the last two decades or so. As Fotheringham, Brunsdon, and Charlton (2000, 1) suggest, “quantitative geography generally experienced a ‘downturn’ in its popularity between the early 1980s and the mid-1990s.” It is perhaps not an exaggeration to say that many geographers now believe that the quantitative revolution is long over and quantitative geography is in a moribund state (Plummer 2007). Yet, despite the seemingly widespread antipathy against quantitative geography, it remains quite active in several geography subfields, especially transport, economic, and urban geography. Indeed quantitative work is regularly published in general and specialty journals in geography, including Annals of the Association of American Geographers, Geographical Analysis, Environment and Planning A, The Professional Geographer, Journal of Geographical Systems, Urban Geography, and many others (cf. Goetz, Vowles, and Tierney this issue).

 

Although quantitative geography might be generally “perceived as a relatively static research area,” it is actually “a vibrant, intellectually exciting, area in which many new developments are taking place” (Fotheringham, Brunsdon, and Charlton 2000, 3; see also Clark 2008; Golledge 2008). In fact, quantitative geography itself has undergone profound changes in the past two decades or so. It now aligns more closely with certain premises of critical geographies than the kind of quantitative geography conceived during the quantitative revolution—for instance, its emphasis on local context and local relationships instead of global generalizations about spatial processes, its increased sensitivity to multiple axes of difference (e.g., gender, race, ethnicity, sexuality, and age), and its attention to processes through which individual spatial knowledge is constituted and shapes spatial behavior (Kwan and Weber 2003; Poon 2003; Fotheringham 2006). Further, quantitative geographic research informed by critical perspectives has been and still is an active area of research in transport, economic, and urban geography (e.g., McLafferty and Preston 1997; Wyly 1998; Rigby and Essletzbichler 1997; Plummer and Taylor 2001; Schwanen, Kwan, and Ren 2008; Bergmann, Sheppard, and Plummer 2009; Ren and Kwan forthcoming). Although many have questioned the adequacy of quantitative methods for addressing issues of concern in critical geographies, such as social justice and inequality, many have argued that quantification can potentially make rich contributions to understanding and addressing these issues (e.g., McLafferty 1995; Moss 1995; Plummer and Sheppard 2001; Sheppard 2001; Kwan 2004).Quantitative and critical geographies are not necessarily incompatible and should not be considered inherently antagonistic. In light of the recent attempts to reassert the critical potential and positive role of quantitative geography, we suggest in this introductory article that the persisting antagonism between critical and quantitative geographies is not beneficial to the discipline. We highlight some promising developments in modern quantitative geography and reflect on the ways in which the critical–quantitative binary can be at least partially eclipsed. We emphasize that knowledge in quantitative methods is essential for deciphering and challenging regressive political agendas, now often supported by numbers and quantitative analysis. Quantitative geography, when integrated with a critical sensibility and used appropriately, can be a powerful tool for fostering progressive social and political change. Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 Quantitative Revolution 2: The Critical (Re)Turn 285 Quantitative Geography and Its Critiques Quantitative geography was originally developed to make geography a scientific discipline not unlike physics, where validity of the knowledge generated was justified according to positivist principles (at least for certain practitioners).2 Part of this development was associated with what was called social physics, which drew directly on theories in physics to derive mathematical relations for analyzing human socio-spatial interaction. When positivist epistemology was adopted, the purpose of geographic research was to seek universally applicable generalizations.

 

The researcher was considered a detached observer capable of acquiring objective knowledge of the world through discovering empirical regularity in social, economic, or spatial phenomena. As critical geographers began to question the relevance and value of spatial science in the early 1970s, quantitative geography was criticized as positivist and empiricist because it was based on the principles of scientific objectivity, value neutrality, and the search for universally applicable generalizations. Although some of the early quantitative work illuminated certain aspects of social inequalities such as housing and crime, these studies tended to be considered empiricist as they privileged claims to knowledge based primarily on observable “facts.” Feminist geographers have further argued that “truths” often put forward as universally applicable were valid only for men of a particular culture, class, or race (Women and Geography Study Group [WGSG] 1997). They are also critical of the tendency to draw conclusions based on the principle of universal causality from inferential statistics. Quantitative methods were also criticized for other reasons. For instance, because quantitative methods depend on some quantifiable attributes of the phenomena under study, they are not capable of representing complex human experiences and social realities. This is a serious limitation, as a substantial portion of people’s experiences cannot be expressed through numbers and is therefore not quantifiable. Further, the live connections with research participants are often lost through the use of quantitative data, making it difficult to convey a sense of people’s feelings and their interactions with others (McLafferty 1995).This, in turn, makes it difficult to obtain a contextualized and holistic understanding of the complex processes involved in their everyday experiences.Quantitative data and methods are therefore “disembodied,” as abstracted and decontextualized information is used in the process( WGSG1997). Feminist geographers have also argued that these methods make the identity and masculinist biases of the researcher invisible, thus obfuscating his or her positionality relative to the research and those being studied. Quantitative geography was criticized for assigning any specific individual’s experience into hard-and-fast categories in the collection and analysis of quantitative data, whether these categories are predefined by the researcher or according to official criteria (Jayaratne and Stewart 1991). The rigid nature of the categories and variables used not only imposes a structure that hinders our understanding of socio-spatial processes, but it also fails to reflect the complexities of people’s lived experiences. Very different phenomena can be lumped together in the statistics as if they were the same thing, and the statistics might have a problematic connection with the life they claim to represent (Pugh 1990). Further, because preexisting categories and official statistics are often based on the lives of men and other dominant group(s) in society, using them without extreme caution in geographic research can be problematic. They might actually make it more difficult, if not impossible, to reveal the processes underlying the inequality that women and other marginalized groups experience (e.g., Perrons 1999). For instance, official statistics are often found to be unreliable and even useless for studying women’s labor force participation or contribution to the economy, because many forms of women’s unpaid work are omitted in official definitions of work (Samarasinghe 1997).

 

Another example is Pugh’s (1990, 107) study on homelessness, where she concluded that “life will always be more complex and ambiguous than any possible usable system of coding and classification.” Further, using predetermined categories makes it difficult for research to be open to change or surprise during the research process. This in turn means that it becomes more difficult for the researcher to be responsive to the input or Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 286 Volume 61, Number 3, August 2009 influence of respondents in the research design and process, seriously limiting the practice of the researcher’s reflexivity. Beyond the Critical–Quantitative Binary In light of these criticisms, it is fair to say that quantitative methods have some serious limitations when applied to the study of certain kinds of phenomena—for example, when the purpose is to uncover the complex and nuanced gendered, racialized, or sexualized experiences of individuals or the socio-spatial construction of identities. It does not necessarily imply, however, that quantitative geography cannot make important contributions to critical geographies. The difficulty in reconnecting the critical and the quantitative, however, has been in part due to the real or imagined existence of the kind of quantitative geography developed and practiced in the 1950s and 1960s in contemporary geographic research. Certain geography subfields, such as transport geography, are historically more quantitative than others due to the influence of allied fields such as civil engineering and neoclassical economics (Goetz,Vowles, and Tierney this issue). Although many quantitative geographers are critically inspired, with primary research interests on significant social issues such as racial segregation, income inequalities, and health disparities, some critics tend to understand quantitative geography in terms of the most abstract kind of mathematical theorization. Another reason for the difficulty in reconciling the critical and the quantitative apparently stemmed from the identity politics in geography, in which contentions between critical– qualitative and spatial–analytical perspectives over several decades have reinforced and rigidified the critical–quantitative antagonism in geography (Kwan 2004; Barnes this issue). Consequently, many in the discipline tend to perceive or represent the two approaches as irreconcilable spheres of geographic research in spite of recent attempts to bring critical and quantitative geographies together. Further, despite considerable progress in quantitative geography that has helped to bring the two closer, the image of “bone-headed number crunching” seems to linger on in the minds of many critics (Ellis this issue). Recent developments in quantitative geography, however, have addressed certain limitations of conventional quantitative approaches, the primary objective of which was often taken to be the establishment of law-like generalizations (Fotheringham 2006).

 

The application of local forms of spatial analysis (e.g., local statistics and geographically weighted regression) and multilevel modeling, for instance, has facilitated the analysis of the relationship between local context and people’s everyday life (e.g., Jones 1991; Anselin 1995; Fotheringham, Brunsdon, and Charlton 2002; Weber and Kwan 2003; Lloyd 2007; Kwan andWeber 2008; Zolnik this issue). Instead of making sweeping generalizations of an entire study area or population, these methods were developed to reveal the effect of local context on social processes and their spatial outcomes. Recent developments and applications of complexity theory, agent-based modeling, evolutionary and non-equilibriumbased models, Bayesian statistical inference, geocomputation, and geovisualization also suggest that the complexities of urban and social systems and people’s everyday life can be taken into account in quantitative models to a certain extent (Kwan 2000; Manson 2001; Davies Withers 2002; Parker et al. 2003; O’Sullivan 2004; Torrens 2006; Plummer 2007; Xie, Batty, and Zhao 2007; Hornsby and Yuan 2008; Bergmann, Sheppard, and Plummer 2009). Although these recent developments have moved quantitative geography away from positivist tenets and therefore seem helpful in bridging the critical–quantitative divide in geography, recent attempts to delink positivism and quantitative methodologies do not seem to be very successful; many critical geographers continue to see quantitative geography as a largely positivist and empiricist endeavor. Contemporary social and political imperatives, however, indicate that the critical– quantitative divide can be detrimental to geography, and that this is a more opportune moment to attempt to reconnect critical and quantitative geographies (Barnes and Hannah 2001). The urgency arises from the selective use of quantitative information in conservative politics and neo-liberal governance (Brown and Knopp 2006). As the articles by Ellis (this issue) andWyly (this issue) in this Focus Section show, conservative politicians embrace such Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 Quantitative Revolution 2: The Critical (Re)Turn 287 information if it supports their purposes but defy it if it counteracts conservative or neoliberal ends. The latter kind of antiquantification tactics could seriously undermine the possibility for activists to pursue progressive social and political change. If statistical data and analyses that can help reveal social injustice or discrimination are now under attack (and even suppressed), the extent to which activists or marginalized social groups can advance their critical agenda now depends on how effectively they can defend the use of quantitative data and analyses. As statistics on “population welfare, inequality, deprivation, and discrimination” are powerful “weapons,” as Ellis (this issue) argues, it is difficult to image “critically inspired, progressively oriented research and activist agenda on race and racialization—or social justice more broadly—in any discipline that would want collection or estimation of these numbers stopped, or research on them sidelined.” It is thus more urgent than ever before to reassess the role of quantitative geography and to question why quantitative methodologies cannot be part of critical geographies.

 

To shed light on the possibilities for bridging the critical–quantitative divide in geography, we organized a series of five sessions— entitled “Critical Quantitative Geographies: Beyond the Critical/Analytical Binarism”—at the 2007 annual meeting of the Association of American Geographers (AAG) in San Francisco. The purpose of these sessions was to explore the possibilities for crossing the boundary of and forging creative connections between critical–qualitative and analytical–quantitative geographies. We sought contributions that attempted to develop new vocabularies or alternative rationalizations that help reconnect critical–qualitative and analytical–quantitative geographies. We also solicited papers that explore how critical–qualitative and analytical– quantitative approaches can enrich each other and how quantitative methods can be used to address issues informed by critical geographies. Several questions were emphasized in our call for papers: (1) To what extent is a “new quantitative geography” that is based on critical social or cultural theory possible? (2) In what ways can quantitative methods be used in research inspired by critical social theory? (3) How can quantitative geographies take people’s lived experiences into account? (4)How can social, cultural, and political contexts be foregrounded in quantitative analysis? (5) How can quantitative geographies take situated knowledges and positionality of the researcher and researched into account? (6) How can reflexivity be practiced when conducting quantitative analysis? How can this be articulated in research reports or publications? A total of twenty-nine geographers participated in these sessions, with twenty-four papers or panel presentations. Participants spanned a wide spectrum of specialties and theoretical perspectives, including economic geography, feminist geography, population geography, transport geography, and spatial analysis. The articles included in this Focus Section of The Professional Geographer are viewpoint papers that address conceptual or theoretical issues pertinent to the themes of the AAG sessions. Four articles largely based on practical engagements and empirical studies are included in another Focus Section that will appear in the next issue of the journal. In addition, another set of papers presented at the AAG sessions was published as a special issue of Environment and Planning A (Kwan and Schwanen 2009). Instead of providing a summary of the articles in this Focus Section, we outline some of the issues they highlight to provide a context for these viewpoint articles, which seek to contribute to the debate on the critical–quantitative divide in geography.

 

Reinvigorating Quantitative Geography’s Critical Sensibility A surprising and often ignored aspect of the quantitative revolution, cogently described by Barnes (this issue), is that locational analysis and spatial science were originally developed with intentions that closely aligned with those of contemporary critical geographies. They were developed as means of critique and progressive social change. The original intent of the three most influential location theorists, who inspired much of the work in early quantitative geography (Alfred Weber, Walter Christaller, and Johann Heinrich von Th¨ unen), was to reveal the abject social conditions of their times using quantitative data and methods. As Barnes (this issue) argues, they “intended their mathematics for politically progressive ends.” Further, even the key figures in the quantitative revolution did not consider their quantitative Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 288 Volume 61, Number 3, August 2009 methods and their critical politics contradictory, and many of them were actually leftist activists in their times (Barnes this issue; Wyly this issue). The understanding that quantitative geography is antagonistic to or incompatible with critical geographies was due to the particularly influential critique of quantitative geography in the early 1970s by David Harvey, who represented critical geographies as nonquantitative, if not antiquantitative. It is now important to reinvigorate quantitative geography’s critical sensibility and to recognize that it was originally meant for a critical politics that seeks to challenge and transform “prevalent relations, systems, and structures of capitalist exploitation, oppression, imperialism, neo-liberalism, national aggression, and environmental destruction” (Moss, Berg, and Desbiens 2002, 3). Reconnecting the Critical and the Quantitative To reconnect the critical and the quantitative in geography, themes or notions that are central to both critical and quantitative geographies can be used as possible bridges to overcome the divide, and means that facilitate their interactions can be developed. On one hand, important notions central to both critical and quantitative geographies can be used to reconnect critical and quantitative geographies. The notions of difference and context, for instance, are two such connective constructs that can stimulate dialogue and enhance mutual understanding, even though—or perhaps exactly because—their conceptualizations in critical theory and spatial analysis differ in various ways (cf. Dixon and Jones 1998). Geographers in general are now more attentive to difference among individuals across multiple axes and attribute fine-scale variations in “the outcomes of spatial events to differences between places and differences between people within places” (Zolnik this issue). In this regard, multilevel models seem to be promising tools for examining the effects of differences among individuals and geographic context on a wide variety of phenomena. Further, they can be complemented by qualitative work that greatly enhances our understanding of the lived experiences of individuals in their daily lives.

 

Another potential means, as suggested by Barnes (this issue), is by creating “trading zones,” which are made possible by the use of a simplified, hybrid trading language that facilitates exchange between different groups of people with different values, languages, and meanings. Other possible means for moving beyond the critical–quantitative binary are the practices of hybrid geographies and “boundary projects,” proposed by Kwan (2004, 758) to refer to geographic practices that challenge the boundary and forge creative connections between the critical and the quantitative. Examples of hybrid practices include studies that use quantitative or geographic information system (GIS) methods to address issues informed by critical geographies, analyses that employ mixed-method approaches to explore the multiple realities and lived experiences of individuals, and works that integrate critical social theory and spatial analytical methods. The practice of hybrid geographies is, however, fraught with difficulties and limitations. As Wyly (this issue) warns: How can we ever find the time to master the dizzying array of traditions and techniques required to create truly hybrid geographies, without giving up the depth that comes with specialization in social theory or spatial econometrics or feminist ethnography or participant observation or policy analysis or . . . the list goes on. . . . If we are not careful, radical openness can permit fragmented, shallow engagements that leave us equally incompetent in everything. How attempts to reconnect the critical and the quantitative can avoid this predicament remains a serious challenge. Further, there are real ontological and epistemological limits to hybridity due to the mathematical language used in quantitative geography and GIS (Leszczynski this issue). Certain types of knowledge simply cannot be handled quantitatively (Brown and Knopp 2008). It is now important to explore how existing quantitative tools like GIS can be used to handle nonquantitative information meaningfully (e.g., Kwan 2007; Kwan andDing 2008). Conclusion Because of the often-ignored critical root of quantitative geography (as discussed earlier), calling this movement the second quantitative Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 Quantitative Revolution 2: The Critical (Re)Turn 289 revolution or the critical turn in quantitative geography is somewhat misleading. It seems more precise to talk about recovering the critical potential (or sensibility) of quantitative geography, or a return to the original critical spirit of the “first” quantitative revolution in geography. The critical (re)turn in quantitative geography has been underway for quite some time and “a new generation of geographers is responding to the urgent need to discern and analyze the assumptions and starting points for the things done and the things thrown before the minds of the many different people involved in public policy and urban (in)justice” (Wyly this issue).

 

Although a revolution entails a significant and often abrupt change that usually occurs in a short period of time, we do hope that the articles in this Focus Section challenge the dominant understanding that quantitative geography and critical geographies (or politics) are necessarily conflicting endeavors. We also hope that this critical (re)turn will help abrogate decades of antagonism since the “first” quantitative revolution and that it will benefit geography and progressive social and political change over time. We invite all geographers to participate in this important project, which seeks to reinvigorate the critical sensibility of quantitative geography and to transcend the critical–quantitative binary. Quantitative geography is a powerful tool for challenging social and global injustice, and it can play an important role in progressive social and political change.

 Notes 1 Involving many individuals, networks, and events, the quantitative revolution was actually far more complex and historically contingent than a coherent movement as suggested by the term (Barnes 2004; Hubbard and Kitchin 2007).

2 Many geographers have argued that quantitative geography does not necessarily have to be based on the epistemological premises of positivism (e.g., Plummer and Sheppard 2001; Kwan 2004; Fotheringham 2006). Literature Cited Anselin, L. 1995. Local indicators of spatial association—LISA. Geographical Analysis 27:93– 115. Barnes,T. J. 2004. The rise (and decline) of American regional science: Lessons for the new economic geography? Journal of Economic Geography 4:107– 29. Barnes, T. J., and M. Hannah. 2001. The place of numbers: Histories, geographies, and theories of quantification. Environment and Planning D 19:379–83. Bergmann, L., E. Sheppard, and P. S. Plummer. 2009. Capitalism beyond harmonious equilibrium: Mathematics as if human agency mattered. Environment and Planning A 41:265–83. Brown, M. 2007. Counting on queer geography. In Geographies of sexualities, ed. K. Browne, G. Brown, and J. Lim, 206–14. London: Ashgate. Brown, M., and L. Knopp. 2006. Places or polygon? Governmentality, scale, and the Census in The gay and lesbian atlas. Population, Space and Place 12:223–42. ——. 2008. Queering the map: The productive tensions of colliding epistemologies. Annals of the Association of American Geographers 98 (1): 40– 58. Clark, W. A. V. 2008. Geography, space, and science: Perspectives from studies of migration and geographical sorting. Geographical Analysis 40 (3): 258–75. Davies Withers, S. 2002. Quantitative methods: Bayesian inference, Bayesian thinking. Progress in Human Geography 26 (4): 553–66. Dixon, D. P., and J. P. Jones, III. 1998. My dinner with Derrida, or spatial analysis and poststructuralism do lunch. Environment and Planning A 30 (2): 247–60. Fotheringham, A. S. 2006. Quantification, evidence and positivism. In Approaches to human geography, ed. S. Aitken and G. Valentine, 237–50. London: Sage. Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2000. Quantitative geography: Perspectives on spatial data analysis. London: Sage. ——. 2002. Geographically weighted regression: The analysis of spatially varying relationships. Chichester, UK:Wiley. Golledge, R. G. 2008. Behavioral geography and the theoretical/quantitative revolution. Geographical Analysis 40 (3): 239–57. Hornsby, K. S., andM. Yuan, eds. 2008. Understanding dynamics of geographic domains. London and New York: CRC Press. Hubbard, P., and R. Kitchin. 2007. Battleground geographies and conspiracy theories: A response to Johnston (2006). Transactions of the Institute of British Geographers NS 32:428–34. Jayaratne, T. E., and A. J. Stewart. 1991. Quantitative and qualitative methods in the social sciences: Current feminist issues and practical strategies. In Beyond methodology: Feminist scholarship as lived Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 290 Volume 61, Number 3, August 2009 research, ed.M.M. Fonow and J. A. Cook, 85–106. Bloomington: Indiana University Press. Jones, K. 1991. Multi-level models for geographical research. Norwich,UK: Environmental Publications. Kwan, M.-P. 2000. Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: A methodological exploration with a large data set. Transportation Research C 8:185–203. ——. 2004. Beyond difference: From canonical geography to hybrid geographies. Annals of the Association of American Geographers 94 (4): 756– 63. ——. 2007. Affecting geospatial technologies: Toward a feminist politics of emotion. The Professional Geographer 59 (1): 22–34. Kwan, M.-P., and G. Ding. 2008. Geo-narrative: Extending geographic information systems for narrative analysis in qualitative and mixed-method research. The Professional Geographer 60 (4): 443– 65. Kwan,M.-P., and T. Schwanen. 2009. Critical quantitative geographies. Environment and Planning A 41:261–64. Kwan,M.-P., and J. Weber. 2003. Individual accessibility revisited: Implications for geographical analysis in the twenty-first century. Geographical Analysis 35 (4): 341–53. ——. 2008. Scale and accessibility: Implications for the analysis of land use–travel interaction. Applied Geography 28:110–23. Lloyd, C. D. 2007. Local models for spatial analysis. London and New York: CRC Press. Manson, S. M. 2001. Simplifying complexity: A review of complexity theory. Geoforum 32:405–14. McLafferty, S. 1995. Counting for women. The Professional Geographer 47 (4): 436–42. McLafferty, S., and V. Preston. 1997. Gender, race, and the determinants of commuting: New York in 1990. Urban Geography 18 (3): 192–212. Moss, P. 1995. Embeddedness in practice, numbers in context: The politics of knowing and doing. The Professional Geographer 47:442–49. Moss, P., L. Berg, and C. Desbiens. 2002. The political economy of publishing in geography. ACME 1:1–7. O’Sullivan, D. 2004. Complexity science and human geography.Transactions of the Institute of British Geographers NS 29:282–95. Parker, D., S. M. Manson, M. A. Janssen, M. J. Joffmann, and P. Deadman. 2003. Multi-agent systems for the simulation of land-use and landcover change: A review. Annals of the Association of American Geographers 93 (2): 314–37. Perrons, D. 1999. Missing subjects? Searching for gender in official statistics. In Statistics in society: The arithematic of politics, ed. D. Dorling and S. Simpson, 105–14. London: Arnold. Plummer, P. 2007. Economic geography, by the numbers. In Politics and practice in economic geography, ed. A. Tickell, E. Sheppard, J. Peck, and T. Barnes, 176–86. London: Sage. Plummer, P., and E. Sheppard. 2001. Must emancipatory economic geography be qualitative? Antipode 33 (2): 194–99. Plummer, P., and M. Taylor. 2001. Theories of local economic growth:Model specification and empirical validation. Environment and Planning A 33:219–36. Poon, J. 2003. Quantitative methods: Producing quantitative methods narratives. Progress in Human Geography 27 (6): 753–62. Pugh, A. 1990. My statistics and feminism—A true story. In Feminist praxis: Research, theory and epistemology in feminist sociology, ed. L. Stanley, 103– 12. London and New York: Routledge. Ren, F., and M.-P. Kwan. Forthcoming. The impact of the Internet on human activity-travel patterns: Analysis of gender differences using multi-group structural equation models. Journal of Transport Geography. Rigby, D. 2007. Evolution in economic geography? In Politics and practice in economic geography, ed. A. Tickell, E. Sheppard, J. Peck, and T. Barnes, 176–86. London: Sage. Rigby, D., and J. Essletzbichler. 1997. Evolution, process variety, and regional trajectories of technological change in US manufacturing. Economic Geography 73:269–84. Samarasinghe, V. 1997. Counting women’s work: The intersection of time and space. In Threshold in feminist geography: Difference, methodology, representation, ed. J. P. Jones, III, H. J. Nast, and S. M. Roberts, 129–44. New York: Rowman & Littlefield. Schwanen, T., M.-P. Kwan, and F. Ren. 2008. How fixed is fixed?Gendered rigidity of space–time constraints and geographies of everyday activities. Geoforum 39:2109–21. Sheppard, E. 2001: Quantitative geography: Representations, practices and possibilities. Environment and Planning D 19:535–54. Torrens, P. M. 2006. Simulating sprawl. Annals of the Association of American Geographers 96 (2): 248–75. Weber, J., and M.-P. Kwan. 2003. Evaluating the effects of geographic contexts on individual accessibility: A multilevel approach. Urban Geography 24:647–71. Women and Geography Study Group (WGSG), Institute of the British Geographers. 1997. Feminist geographies: Explorations in diversity and difference. Harlow, UK: Longman. Wyly, E. 1998. Containment and mismatch: Gender differences in commuting in metropolitan labor markets. Urban Geography 19 (5): 395–430. Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009 Quantitative Revolution 2: The Critical (Re)Turn 291 Xie, Y., M. Batty, and K. Zhao. 2007. Simulating emergent urban form using agent-basedmodeling: Desakota in the Suzhou-Wuxian region in China. Annals of the Association of American Geographers 97 (3): 477–95. MEI-PO KWAN is Belle van Zuylen Chair in the Faculty of Geosciences at Utrecht University, Utrecht, The Netherlands; Distinguished Professor of Social and Behavioral Sciences in the Department of Geography at The Ohio State University, 1036 Derby Hall, 154 North Oval Mall, Columbus, OH 43210; and Adjunct Professor of Epidemiology and Biostatistics in the School of Medicine at Case Western Reserve University, Cleveland, Ohio 44106. E-mail: kwan.8@osu.edu. Her research interests include research methods; geographies of health; geographies of gender, race, and religion; information and communication technologies; GIS; and feminist perspectives on geospatial technologies. TIM SCHWANEN is Research Fellow in Transport and Geography at the Transport Studies Unit, School of Geography and the Environment, Oxford University and Lecturer in Urban Geography at the Faculty ofGeosciences,Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, The Netherlands. E-mail: t.schwanen@geo.uu.nl. His current research interests include research methodologies, geographies of mobilities, geographies of aging and old age, time geography, and information and communication technologies. Downloaded By: [Kwan, Mei-Po] At: 19:34 30 June 2009

 

 

 

 

 

 

 

 

發表於 關鍵GIS文獻 | 已標籤 , | 發表迴響

石計生在京都立命館大學keynote演講後聚餐

這夜深深感覺,GIS學術世界裡有準確的科學,無邊無際想像和完全跨界的深厚友誼。從左到右教授:矢野桂司(Keiji Yano, Ritsumeikan U., Kyoto), A Stewart Fotheringham(U. of St. Andrews, Scotland, UK), 石計生(C.S. Stone SHIH, Soochow U., Taiwan), 中谷友樹(Nakaya Tomoki, Ritsumeikan U., Kyoto) and 花岡和聖(Kazumasa Hanaoka, Ritsumeikan U., Kyoto)(京都車站,天一富良天婦羅店)

 

發表於 教授國際學術交流 | 發表迴響

石計生與Prof. A Stewart Fotheringham專題演講後於京都

京都立命館大學GIS國際會議論壇專題演講後,我與另一名專題講者:從英國蘇格蘭聖安德魯大學(建立於1413年,有六百年歷史,僅次於牛津大學)地理資訊中心主任Prof. A Stewart Fotheringham合照於京都的哲學之道(Philosopher’s Road)。 Stewart教授他是世界知名的空間研究與GIS專家,發明了GWR(Geographically Weighted Regression)的軟體,被普遍應用在城市與空間研究,我本身就是使用者。他說也很欣賞我講的Music GIS,直說從沒有人能把演歌結合GIS,將其混血性格講得如此具學術性。跟他相處數天,成為好朋友。

發表於 未分類 | 發表迴響

石計生教授受京都立命館大學矢野桂司(Keiji Yano)教授之邀赴該校進行專題演講

 

 

 

 

 

 

 

 

 

發表於 教授國際學術交流, 未分類 | 發表迴響

石計生教授研究與學術發表(至2012年)

教師照片

副教授

石計生

最高學歷:美國伊利諾大學芝加哥分校社會學博士
專長:藝術社會學、城市社會學、社會地理資訊系統、社會學理論
石計生教授

美國伊利諾大學芝加哥分校社會學博士,現任東吳大學社會學系副教授、東吳大學人文社會學院人文社會研究室「地理資訊系統(GIS)技術支援中心」召集人、教育部教學卓越「建置GIS平台支援教學」計畫(2006-2008)主持人。2001年曾應日本京都立命館大學(Ritsumeikan University)地理系之邀進行訪問講學;2005至2007年間分別應北京清華大學社會系、上海復旦大學與南京大學社會系、南京師範大學「江蘇省GIS重點實驗室」之邀,以訪問教授身份針對「社會地理資訊系統」與「後現代空間」等相關主題進行講學。2012年應日本京都立命館大學之邀,進行臺灣GIS人文社會應用專題演講。亦曾主持過多項GIS相關研究案,並多次擔任國內外GIS相關研討會專題演演講人、會議召集人、發表人與評論人。 目前已出版各類學術著作共十種,包括GIS專書四種:《地理資訊系統社會學》(儒林,2001)、《人文社會地理資訊系統—理論、資料與Major GIS解析,增訂二版》(儒林,2003)和《社會地理資訊系統與ArcGIS教學研究》(儒林,2007),《地理資訊科學:重新發現我們的酷社會,人文的、歷史的、社會的空間綜合人文學探究》(臺北:儒林, 2010)等。理論與方法研究六種:《意識形態與台灣教科書—對於台灣中小學社會科學教科書之研究》(前衛,l993)、《馬克思理論與當代社會制度》(揚智,2000)、《宜蘭縣社會經濟發展史》(宜蘭縣政府,2000)、《社會科學研究與SPSS資料分析:台灣資料庫的應用,二版》(雙葉,2006)、《社會學理論–從古典到現代之後》(三民,2006)《社會學》(Sociology) (台北:三民, 2009)出版等。亦出版各類文學藝術創作與評論書籍共八種。

 

研究計畫

執行時間
研究計畫名稱
研究計畫補助單位
2010.08-2011.07 「寶島歌王洪一峰虛擬音樂博物館」數位典藏計畫:NSC 99-2631-H-031-002- 行政院國科會專題計畫
2010.08-2012.07 台灣歌謠作為一種「時代盛行曲」:台北-上海跨界城市與媒介迴路流傳的社會文化探究:99-2410-H-031-061-MY2 行政院國科會專題計畫
2010.08-2011.01 音樂媒介空間與數位社會文化典藏 行政院教育部顧問室─人文教育革新中綱計畫—人文數位教學計畫
2009.08-2010.07 音樂作為一種鄉愁:台灣歌謠與民歌流行轉換之社會研究(1970-1980)(Ⅱ), 研究計畫編號:NSC 98-2410-H-031 -020 行政院國科會專題計畫
2010.02-2010.07

音樂與社會─台灣流行音樂的數位地圖典藏

行政院教育部顧問室─人文教育革新中綱計畫—人文數位教學計畫
2008.08-2009.07 音樂作為一種鄉愁:台灣歌謠與民歌流行轉換之社會研究(1970-1980)(Ⅰ), 研究計畫編號:NSC 97-2410-H-031-039 行政院國科會專題計畫
2008.08- 2009.07 建置GIS教學平台 (計畫主持人)(第三年延續計畫) 行政院教育部委託教學卓越計畫
2009.02-2009.07 文史數位化社會地圖製作 行政院教育部人文教育革新中綱計劃—人文數位教學計畫
2008.06-2008.12 社區GIS教學推廣與應用計畫 行政院教育部社會教育司委託研究補助
2007.08- 2008.07 建置GIS教學平台 (計畫主持人)(第二年延續計畫)
行政院教育部委託教學卓越計畫
2007.08-2009.07
台灣歌謠作為一種精神現象︰紀露霞演唱生命史之社會構成研究(1960與1990), 研究計畫編號: NSC 96-2412-H-031-001
行政院國科會專題計畫
2006.08-2008.07
『東吳大學提昇社會科學整合研究計畫—「華人社會人權論述與實踐」』子計畫:重大政治案件對政治社會和受難者的影響研究(子計畫協同主持人)
行政院國科會專題計畫
2006.08- 2007.07
建置GIS教學平台 (計畫主持人)
行政院教育部委託教學卓越計畫
2004.03- 2004.09
苗栗縣南庄鄉蓬萊村數位落差弭平與國小學童GIS學習
行政院研考會委託

2004.08- 2005.02

「客家社會文化變遷調查」(GIS部分)(協同主持人)
行政院客家委員會委託國立中央大學客家學院研究計畫
2003.12-2004.12
產業文化資產清查資料庫及運用統合規劃研究(共同主持人)
行政院文化建設委員會委託
2000.12-2003.11
『行政院國科會提升私立校院研發能量專案:東吳大學文學院人文社會實驗室—台北市士林地區人文社會變遷研究』子計畫一:地理資訊系統之建制與管理
行政院國科會專題計畫
2000.12-2003.11
『行政院國科會提升私立校院研發能量專案:東吳大學文學院人文社會實驗室—台北市士林地區人文社會變遷研究』子計畫七:士林地區地方權力與產業生態發展
行政院國科會專題計畫
2001.12-2002.01
輔導原住民納保及就業問卷資料登錄之研究
行政院原住民委員會委託
2001.12-2002.01
原住民長期照護需求之調查研究
行政院原住民委員會委託
2001.08-2003.07
全球化與蘇州經濟發展的在地條件:吳江市的個案研究(共同主持人)
行政院國科會專題計畫
2001.08-2002.01
政府採購得標廠商僱用原住民勞工之研究(共同主持人)
行政院原住民委員會委託
期刊論文

審制期刊/專書論文/專書

  • 石計生,2012.09,大稻埕異托邦:城市文化史裡的「福科問題」,《台灣社會研究季刊》,86期(TSSCI)
  • C. S. Stone SHIH,2012.05,Contesting Urban and Rural Space in Desakota Regions of Taiwan — A Case Study of I-Lan County, Environment and Urbanization ASIA, May, Sage Publication, (accepted) 
  • 石計生, 2011.12,台灣歌謠作為一種「時代盛行曲」:音樂臺北的上海及諸混血魅影(1930-1960〉,《台灣社會學刊》,47期(TSSCI)。
  • 石計生,2011.3 ,東西有別:東台灣宜蘭城鄉混合都市化的社會空間探究(1996-2007),《社會理論論叢》(Journal of Social Theory)(CSSCI),第六輯,南京大學社會學院編輯部,中國大百科全書出版社出版(紀建良合著)。
  • 石計生,2010.03 ,「超現實」救贖之道:從本雅明寓言詩學到道家內丹學,p.147-191,《社會理論論叢》(Journal of Social Theory)(CSSCI),第七輯,南京大學社會學院編輯部,中國大百科全書出版社出版。
  • 石計生,2010.03,再現、搭橋與詮釋:論社會地理信息系統的實現,《空間綜合人文學與社會科學研究》,p.17-32,林琿等主編,北京︰科學出版社(與紀建良、黃映翎合著)。
  • 石計生,2009.11 ,社會環境中的感覺建構—「寶島歌后」紀露霞歌謠演唱史與台灣民歌之研究,《社會理論學報》(CSSCI),第十二卷,第二期,p. 433-477,2009年秋季號,北京大學:《社會理論學報》編輯部。
  • 石計生,2008.11,崩壞的與建立的-論解嚴前後(1980-1990年)台灣的社會發展,頁二六八至二七九,《經濟增長與社會發展:比較研究及其啟示》,上海:社會科學文獻出版社。
  • 石計生,2008.09,田野調查的數位化技藝-以台北天母三玉宮的宮廟繞境為例,頁三七三至二八九,《非物質文化遺產保護與田野調查工作方法》,北京:文化藝術出版社。(與林全進合著)
  • 石計生,2008.08,數位典藏教育作為一種文化全球化現象之反思,教育資料與研究,第83期,頁135-152。
  • 石計生,2008.06,保守求生:論道家身體轉向及其比較文化實踐,中正大學中文學術年刊,2008年第一期(總第十一期),頁137-184。(THCI)
  • 石計生,2004.06,全球化士林的產業生態空間位移:地理資訊系統的研究取向,東吳社會學報,第16期,頁99-148。
  • 石計生,2003.01,印象空間的涉事—以班雅明(Walter Benjamin)方法論楊牧詩,中外文學期刊,第31卷,第8 期,頁234-252。
  • 石計生,2001.12,意義的挑釁:德希達與保羅德曼的解構主義及其當代社會的文化解釋探究,東吳社會學報,第11期,頁1-42 。
  • 石計生,2000.10,宗教組織與移民社會:芝加哥大都會區兩個華人佛教寺廟的比較研究,政大社會學報,第30期,頁189-236。

      一般論文

  • 石計生,2009.05 ,十九世紀以來影響世界的重要思潮:開國忠烈的文化資產《歷史月刊》,256期,頁54-61。
  • 石計生,2009.04,歌唱人生四帖—紀露霞,洪一峰,潘安邦,洪小喬,頁七二至八六,人籟論辨月刊,台北:利氏文化出版。
  • 石計生,2008.08,生命如此遼闊:我與我的兩個身體,頁六0至六六,人籟論辨月刊,台北:利氏文化出版。
  • 石計生,2008.07,流行音樂裡「不能說的秘密」,頁六五至六六,城市中國(Urban China)月刊,總第二十九期,北京:城市中國出版。
  • 石計生,2008.05,那玫瑰所指向的慈悲空間-紀露霞、蔡瑞月和蕭渥廷之藝術與救贖,頁五二至六六,人籟論辨月刊,台北:利氏文化出版。
  • 石計生,2008.03,在和合中凝視:張小蟬現代詩藝術論,《星星》詩刊,新春特大號半月刊第2期,頁二二九至二四一,北京:星星詩刊社出版。該學術刊物係中國國家中文核心期刊、新聞出版總署雙效期刊,多次榮獲國家期刊獎、國家重點社科期刊獎。
  • 石計生,2006.12,蘭陽平原的雨月四十八日–黨外宜蘭幫的源起:黃煌雄、陳定南、游錫的傳承,聯合報系歷史月刊,十二月號,第227期,頁64-71
  • 計生,2006.05,台灣作為一種異質社會的色情意識,聯合報系歷史月刊,五月號,第220期,頁41-48。
  • 計生,2006.03,建築作為一種奇觀東方主義,聯合報系歷史月刊,三月號,第218期,頁40-49。
  • 計生,2006.01,靈光消逝的足跡–北京講學記,聯合報系歷史月刊,一月號,第216期,頁32-41。
  • 石計生,2004.06,Distinctive Urbanization in the Peri-urban Regions of Est and Southeast Asia: renewing the Debate.(東亞與東南亞的都市周邊區域的特殊都市化: 重新開始辯論),東吳社會學報,第16期,頁187-208。(Terry G. McGee著)(與林珆如合譯)(研究紀要)
  • 石計生,2003.10,機械捕捉的美感:從班雅明(Walter Benjamin)談愛森斯坦電影蒙太奇,當代,第194期,頁85-97。
  • 石計生,2003.01,二元世界與向下沉淪的美學 –盧貝松(Luc Besson)的電影創作探究,當代,第185期,頁76-93。
  • 石計生,2002.10,空間經濟與區域社會發展:以宜蘭縣的蘇澳港灣區為例,宜蘭文獻叢刊,第19期,頁17-58。
  • 石計生,2002.06,埋伏坪手記─夏天,我們造訪了一個泰雅部落,東吳社會學報,第12期,頁181-192。(研究紀要)
  • 石計生,2002.03,權力的場域:地方社會經濟發展與宜蘭環保運動—波迪厄(Pierre Bourdieu)的「社會實踐論」的應用,宜蘭文獻雜誌,第56期,頁82-104。
  • 石計生,2001.12,視覺化的學術世界:「士林人文社會實驗室」的研究紀要,東吳社會學報,第11期,頁163-173。(研究紀要)
  • 石計生,2001.11,資訊社會與社會學理論—一 個馬克思主義論述傳統與批判,當代,第171期,頁10-33。
  • 石計生,2001.10,虛懸於空中的逃離—評高行健的小說文學,當代,第170期,頁130-143。(書評)
  • 石計生,2001.08,都市與現代生活,當代,第 168期,頁40-53。
  • 石計生,2001.06,「士林人文社會實驗室」的跨學門整合方法與數位化社會地圖的建構,行政院國家科學委員會人文與社會科學簡訊,第3卷,第4期,頁60-66。
  • 石計生,2001,Chinese Christiansin America: Conversion, Assimilation, and Adhesive Identities, International Migration Review, Vol.35 Spring, Book Reviews, 333-335.
  • 石計生,2001,Frontier and Enclave: Two Ethnic Enterprises in Chicago`s Chinatown—Shanghai Restaurant and Tang Long Temple, International Migration Review, Vol.35, Spring, Review of Reviews, 360.
  • 石計生,2000.05,東方經濟如何可能?對萊丁(G .Redding)<中華資本主義的精神>一書的批評,東吳社會學報,第9期,頁179-196。(書評)
  • 石計生,1999,創傷依然在,奮起中寮時--告別1999大地震的田野手記,丹道文化,第23期,頁10-12。
  • 石計生,1998.03,一個亞洲中心的新思考—宜蘭,大步邁向城鄉混合型都市化的道路,宜蘭文獻雜誌,第32期,頁53-79。
  • 石計生,1997.06,我與張寶勝,丹道文化,第18期,頁25-31。
  • 石計生,1997.03,密西根湖畔的沉思─宗教與現實之間,全真人,頁10-13。
  • 石計生,1996.06,「三緣四正論」「道學真言」緣起,丹道文化,第16期,頁1-10。
  • 石計生,1996.06,始得「無極覓靈功」,丹道文化,第15期,頁21-23。
  • 石計生,1995.06,練功札記,丹道文化,第15期,頁31-35。
  • 石計生,1995.05,宜蘭縣產業與經濟發展的基本原則—「停滯」與「轉換」的歷史分析,宜蘭文獻叢刊,第7期,頁260-279。
  • 石計生,1994.06,道家社會主義的理論初探(下)–伏羲八卦陰陽推衍的社會哲學(和馬克思比較),丹道文化,第11期,頁21-23。
  • 石計生,1994.06,道家社會主義的理論初探(上)–伏羲八卦陰陽推衍的社會哲學(和馬克思比較),丹道文化,第10期,頁21-24。
  • 石計生,1991,形式與整體—盧卡奇美學理論之研究,中外文學,第234期,頁52-69。
  • 石計生,1988,從學生運動到運動學生,對一九九零年三月十六日學運的參與式觀察—一個韋伯(Max Weber)理念型方法的運用,中國論壇,第350期,頁60-63。

研討會論文

  • 石計生,2012.03,Digitalized Enka-stylish Taipei: The Japanese Cultural Space of Taiwanese Ballad’s Imaginary.  Research paper for  guest speak at the GIS and Digital Humanities, The GIS International Seminar. Ritsumeikan  University, Kyoto, Japan. 應邀至日本京都立命館大學地理系舉辦的地理資訊系統(GIS)與數位人文國際論壇,以研究文章 數位化演歌台北:台灣歌謠想像中的日本文化空間為題,發表客座專題演講。
  • 石計生,2011.12,新世代的粉都行動:日本國民偶像AKB48音樂的台灣流行探究, 2011 年臺灣社會學年會「研究新世代」,台灣社會學會、台灣大學社會學系舉辦,會議地點,台灣大學社會學系系館(周汝育合著)(外審制學術會議論文)。
  • 石計生,2011.10.21,台灣歌謠作為一種「時代盛行曲」:紀露霞演唱生命史與媒介迴路流傳的文化探究,2011臺灣音樂學論壇。除發表外,亦擔任音樂學研究與科技的運用Panel–地理資訊科學(GIScience)與音樂學研究小組專題(panel discussion)召集人,會議地點:新竹國立交通大學浩然圖書館B1國際會議廳)(外審制學術會議論文)。
  • 石計生,2011.10.18,台灣歌謠「二王一后」音樂的跨界流行:臺北—上海城市媒介文化空間的GIS探究。會議地點:台灣大學集思會議中心。2011年空間綜合人文學與社會科學論壇。主辦單位:臺灣大學地理環境資源學系,香港中文大學太空與地球資訊科學研究所,南京師範大學虛擬地理環境教育部重點實驗室。協辦單位:東吳大學人社院社會地理資訊(SocGIS)中心)(外審制學術會議論文)。(黃映翎合著)
  • 石計生,2011.10.18,數位典藏台灣歌謠:洪一峰大台北音樂空間行走的文化探究,2011數位典藏地理資訊系統學術會議。會議地點:台灣大學集思會議中心。2011年空間綜合人文學與社會科學論壇。主辦單位:臺灣大學地理環境資源學系,香港中文大學太空與地球資訊科學研究所,南京師範大學虛擬地理環境教育部重點實驗室。協辦單位:東吳大學人社院社會地理資訊(SocGIS)中心)(外審制學術會議論文)。(邱婉婷,朱思樺合著)
  • C.S. Stone Shih,2011.08 , Contesting Urban and Rural Space in Desakota Regions of Taiwan– A Case Study of I-Lan County. Sunday Aug. 21, pm2:30-4:10. 106th American Sociological Association (ASA) Meeting, Caesars Hotel,  Las Vegas, Nevada. (與紀建良合著)(外審制全文審查制會議論文)
  • 石計生,2010.12 ,台灣歌謠作為一種「時代盛行曲」:音樂臺北的上海及諸混血魅影(1930-1960),「預見下一個台灣社會?」,2010 台灣社會學年會暨國科會專題研究成果發表會,行政院國科會,輔大社會學系舉辦,會議地點,國璽樓2樓會議(與紀建良、邱婉婷合著)(外審制會議論文)。
  • 石計生,2010.12 ,寶島歌聲:紀露霞、洪一峰與其時代盛行曲,跨文化研究學術研討會,南台科技大學舉辦,會議地點: S棟管科大樓S703第一研討室(邱婉婷、朱思樺合著) (外審制會議論文)。
  • 石計生,2010.12 ,Aufhebung 與Auswicklung:寶島歌后紀露霞 藝術的精神性與社會性,陽明藝文工作坊──社會學如何研究藝術,地點:國立陽明大學活動中心第二會議室。
  • 石計生,2010.10 ,大稻埕異托邦:數位典藏邊境的城市文化探究,2010數位典藏地理資訊研討會,行政院國科會數位典藏與學習之學術與社會應用推廣分項計畫-地理資訊系統子計畫,台大地理環境與資源學系舉辦,會議地點,臺灣大學法律學院霖澤館(外審制會議論文)。
  • 石計生,2010.9.26:孤獨的幾何:楊牧詩的數學美學,2010年9月24-26日「楊牧文學國際學術研討會」,主辦單位:國立政治大學台灣文學研究所,會議地點,政治大學行政大樓第一會議室。
  • 石計生,2009.11.19:回風流行:從台灣歌謠歌曲到上海老歌的媒介文化空間初探,2009年「兩岸江南之美文化與社會研討會」,主辦單位:蘇州大學文學院、社會學院與藝術學院,合辦單位:東吳大學人文社會學院蘇州研究室,會議地點,蘇州:蘇州大學本部紅樓會議中心201室。
  • 石計生,2009.8C. S. Stone SHIH, CHI Cheng Liang, HUANG Yin-Ling and CHIU Yuang-ting: Digitalizing ’s Misora Hibari: The Singing Queen Chi Lu-shiya and the Reconstruction of her Music and Society in 1960s. 14th International Conference of Historical Geographers, Urban and Culture II,Kyoto University . 23–27 August 2009, Kyoto, Japan.
  • 石計生,2009.5.6,「黃色音樂」裡的文化中國分合:上海老歌、臺灣歌謠與校園民歌,2009年「五月兩岸社會與城市論壇」,主辦單位:台大建築與城鄉研究所,合辦單位:元智大學資訊社會學研究所、東吳大學人文社會學院地理資訊系統(GIS)中心,會議地點,台北:台灣大學工學院綜合大樓國際會議廳。
  • 石計生,2009.1.3,紀露霞在歌唱:論台灣歌謠作為一種社會精神現象,2009年台灣文化研究年會,1月3、4日 (星期六、日),主辦單位:文化研究學會、台灣師範大學英語系、翻譯研究所,會議地點,台北:台灣師範大學。
  • 石計生,2008.12.14 ,Desakotasi依然在? 宜蘭都市化型態的社會空間研究(1996-2007),2008年台灣社會學會,台北,中央研究院。(與紀建良合著)。並於該會中組織「城市社會空間與歷史記憶:建構GIS新視角」panel且擔任主持人。
  • 石計生,2008.11.30,從音樂社會學角度看台灣社會轉型–社會環境中的感覺建構:寶島歌后紀露霞歌謠演唱史與台灣民歌之研究,北京大學社會系舉辦的「轉型中的的中國社會與中國社會學—紀念改革開放30週年」國際學術研討會。
  • 石計生,2008.10.21,台灣數位典藏地理資訊在人文社會與資料加值的探討—從數位典藏城市的建置談起,數位典藏地理資訊系統學術研討會,國立台灣大學校總區圖書館國際會議廳,行政院國科會數位典藏與學習之學術與社會應用推廣分項計畫-地理資訊系統子計畫,台大地理環境與資源學系舉辦。
  • 石計生,2007.10,氛圍消失?從SocGIS論數位典藏的人文精神性。地理資訊學術應用研討會,2007年10月13日,台灣大學地理環境資源學系 3 樓 305 室。
  • 石計生,2007.10.20-28 應北京大學社會學系之邀,參加由該系於10.20假北京大學主辦之「經濟快速增長條件下的社會發展戰略:國際比較與啟示」學術研討會,並發表論文「崩壞的與建立的—論解嚴前後(1980-90)台灣的社會發展」。此外,並參加10.27~28由北京大學社會學系主辦之「海峽兩岸社會學理論研討會」,發表論文「道家身體的韻律與實踐:與西方社會理論比較」。期間,亦執行其國科會研究案的資料蒐集。
  • 石計生,2007.06〈田野調查的數位化技術—以台北天母三玉宮的宮廟繞境為例〉,發表於「非物質文化遺產保護中的田野考察工作方法」研討會,6月2-4日,中國藝術研究院主辦,北京。 
  • 石計生,2006.11,圓現象閱讀:三島由紀夫與其小說《豐饒之海》的輪迴美學。2006藝術社會學研討會暨T. J. Clark & Anne Wagner Workshop111718日,中央研究院歐美研究所舉辦。
  • 石計生、黃慧琦、陳翊威,2006.10, 空間化社會指標-跨界建構與地理資訊系統整合雛議。2006年台灣資訊社會學研討會論文,10月15日,元智大學國際會議廳。
  • 石計生、宋依亭,2006.05,日常社會生活中的時間地理:台北地區已婚婦女之消費行動韻律研究(有審稿制論文)。2006年第四屆數位地球國際研討會(The 4th Taipei International Conference on Digital Earth`s Program),05月25日~26日,國家實驗研究院、內政部與中國文化大學聯合舉辦,台北市陽明山中國文化大學國際會議廳。
  • 石計生,2005.11,客家鄉關何處?GIS視覺化技術下的空間分析。2005年台灣社會學年會,11月19日,台北大學舉辦。(與吳亞如、鄒佳樺、陳翊威合著)。
  • 石計生,2005.11,搭橋量與質—社會地理資訊系統的跨越徑路(Bridging the Quantitative and the Qualitative—A Discussion on the Crossing Paths of the SocGIS Method),「東吳大學–上海大學跨岸專題對談講座」,11月7-8日,上海:上海大學。
  • C.S.Stone Shih,2005.07,Geographic Information Systems and City Space—Globalizing Shihlin`s Industries in Taipei City. Presented at 19th International Meeting of the Pacific Regional Science Confernece, July 25-28, Nihon University, Tokyo, Japan.
  • 石計生,2005.06,以地理資訊系統對蘇州台商產業空間分佈之研究,兩岸文學、社會與藝術學術交流研討會,6月13日,東吳大學文學院舉辦,東吳大學文學院會議室。(與鄒佳樺合著)
  • 石計生,2004.10,SCG方法與社會科學研究,「質與量的對話」社會科學方法論研討會,地理資訊在社會科學的應用部份,國立中正大學社會科學院舉辦,嘉義,中正大學。
  • 石計生,2004.09,注意整體,安頓細節:關於「國際無車日」的社會學省思,降低對機動車輛的依賴-無車日的省思座談會子題,淡江大學運輸研究所舉辦。
  • Yee-Zu Lin and C.S. Stone Shih,2004.08,Mapping the Nightclubs and Criminal Behavior in Globalizing Taipei City, a Geographic Information Systems Approach. Conference paper presented at the 99th Annual Meeting of the American Sociological Association (ASA), August 14-17, 2004, CA, San Francisco, USA.
  • 石計生,2004.06,蘇州社會經濟基本發展趨勢之研究,東吳大學文學院各研究室成果發表會,6月17日,台北:東吳大學文學院會議室 。
  • 石計生,2004.05,GIS社會學與空間資訊,第二屆數位地球國際研討會,5月28日,中央研究院、國家實驗研究院太空計畫室與中國文化大學合辦,中國文化大學曉峰紀念館國際會議廳。
  • 石計生,2004.04,從地理資訊系統所見的台北士林區的差異空間,台灣鄉村社會學會年會,4月30日,國立台灣大學思亮館。
  • 石計生,2004.04,地理資訊系統能在社會學走多遠?,東吳大學文學院第二十一屆系際研討會「科際整合與學門對話」,4月29-30日,東吳大學文學院主辦,東吳大學國際會議廳。
  • 石計生,2003.11,蘇州地區社會經濟發展的大圖像與小趨勢–歷史政策、鄉鎮企業、台商、全球化, 2003年兩岸蘇州文化社會現象學術研討會,蘇州大學文學院主辦,中國大陸江蘇省。
  • 石計生,2003.09,地圖所捕捉到的產業生態蹤跡:GIS 與台北市士林區,東吳大學文學院人文社會實驗室—台北市士林地區人文社會變遷研究成果研討會,9月27日,東吳大學文學院人文社會實驗室主辦,東吳大學外雙溪校區G101會議室。
  • C.S.Stone Shih,2003.07,Core, Periphery and Industrial-Ecological Transition under Globalization: The Case of Shihlin Districtin Taipei. Conference paper of the 36th World Congress of Sociology, International Institutional Sociology,Session for the The Global-Local Nexus in Chinese Societies,July 7-11 ,B eijing ,China.
  • 石計生,2002.12,新教倫理、儒家倫理與經濟全球化:經濟社會學的比較研究,第三屆「兩岸倫理」學術研討會,12月10-11日,國立台灣師範大學主辦,國立台灣師範大學國際會議廳。
  • 石計生,2002.11,全球化與台北市士林區域的產業生態—GIS的人文社會考察,自然與社會環境空間資訊應用研討會,11月8-9日,行政院原子能委員會核能研究所主辦,桃園(龍潭):行政院原子能委員會核能研究所。
  • C.S.Stone Shih,2002.08,Place and Space Economy in Transition: Desakotasi Type of Urbanization in Taiwan`s I-Lan County, 1945-1994. Conference paper presented at the 97th Annual Meeting of the American Sociological Association (ASA), August 16-19, 2002, Chicago, Illinois, USA.
  • 石計生,2002.03,地理資訊系統的跨學門應用、理論建構與政策意涵—一個社會文本論的考察,東吳大學文學院第十七屆系際研討會「台灣公共政策的挑戰和因應」,3月21-22日, 東吳大學文學院主辦,東吳大學國際會議廳。
  • 石計生,2002.03,全球化思潮下的台灣行政區重劃原則,行政區域劃分研討會,3月9日,台灣心會主辦,台灣大學法商學院國際會議廳。
  • 石計生,2001.11,地理資訊系統與地理資料庫的建置—「士林人文社會實驗室的經驗」,中華地理資訊學會學術年會,11 月3日,中華地理資訊學會主辦,國立宜蘭技術學院。
  • C.S.Stone Shih,2001.06,Geographic Information Systems and the Construction of Digital Social Maps—Shihlin`s Humanist-Societal Laboratory in Taipei City. Presented at ASIA GIS 2001–Collaboration through GIS in the Internet Era Center for Spatial Information Science, June 20-22,The University of Tokyo. .
  • 石計生,2000.12,社會科學整合的基礎:地理資訊系統與數位化社會地圖的結構,中華地理資訊學會2000年學術研討會,12月 20-21日,中華地理資訊學會與國立成功大學測量工程系主辦,國立成功大學學生活動中心。
  • 石計生,2000.10,空間經濟與區域社會發展:以宜蘭縣的蘇澳港灣區為例,第四屆「宜蘭研究」研討會—眺望海洋的蘭陽平原, 宜蘭縣政府主辦。
  • C.S.Stone Shih,1999.08,Frontier and Enclave: Two Ethnic Enterprises in Chicago`s Chinatown—Shanghai Restaurant and Tang Long Temple. American Sociological Association Meeting, Chicago.
  • 石計生,1999,內在的力量:丹道文化與社會變遷,第四屆亞洲人智學國際年會。
  • C.S.Stone Shih,1998.08,Many Are Called but Few Are Chosen: Two Chinese Buddhist Templesin Chicago Metropolitan Area. American Sociological Association of Religion Meeting, San Francisco.
  • C.S.Stone Shih,1998.08,Many Are Called but Few Are Chosen: Two Chinese Buddhist Temples in Chicago Metropolitan Area. American Sociological Association Meeting, San Francisco.
  • C.S.Stone Shih,1997.09,An Asian Type of Urbanization? Presented at Second Conferenceon the History and Culture of Taiwan, New York, Columbia University.
  • C.S.Stone Shih,1997.04,A New Type of Urban Development? Some Examination on the Desakotasi Process of the I-Lan County, Taiwan. Presented at Midwest Sociologist Meeting, Des Monies, Iowa.
  • C.S.Stone Shih,1997.04,Urbanization, Economic Growth, and Beyond—Desakotasi: The Regional Case of I-Lan County, Taiwan (1952-1995). Presented at 7th Annual Conference of Northwest Regional Consortium for Southeast Asian Studies, Eugene, Oregon, University of Oregon.
  • C.S.Stone Shih,1996.04,Form and Totality: An Essay on George Luka`cs` Aesthetics. Presented at the Midwest Sociologist Society Meeting, Chicago.
  • C.S.Stone Shih,1996.04,The “Great" Transformation to Unknown Destiny: Affiliation Institutions and Three Developmental Patterns in Chinese Rural Economy. Presented at the Midwest Sociologist Society Meeting, Chicago.
  • C.S.Stone Shih,1996.04, Economic Ethics in the Process of Capital Accumulation: a Comparative Analysis of the Economic Sociology of Max Weber and Karl Marx. Presented at the Midwest Sociologist Society Meeting, Chicago.
  • C.S.Stone Shih,1995.08, Does Everyone Flow Southeast? The Inter-Provincial Distribution of Human Resources and Education in China Since 1982. Presented at the Midwest China Seminar, Chicago. ( 與 Richard Barrett & Amy Wang 合著 )
  • 石計生,1988,當代台灣文化現象批判—盧卡奇美學理論運用,台灣研究基金會年會。

專書及專書論文

  • 石計生,2010.05,《地理資訊科學:重新發現我們的酷社會,人文的、歷史的、社會的空間綜合人文學探究》臺北:儒林書局出版。(與黃映翎合著)
  • 石計生,2009.09《社會學》(Sociology) 台北:三民書局出版。
  • 石計生2008.11,從解嚴民主化到揉成一團的後現代台灣,頁三四三至三七0,《跨界:流動與堅持的台灣社會》,台北:群學出版。
  • 石計生,2008.09,田野調查的數位化技藝-以台北天母三玉宮的宮廟繞境為例,頁三七三至二八九,《非物質文化遺產保護與田野調查工作方法》,北京:文化藝術出版社。(與林全進合著)
  • 石計生2008.07 流行音樂裡「不能說的秘密」,頁六五-六六,《城市中國》(Urban China)月刊,北京:城市中國出版社。
  • 石計生,2007.11.10,〈走路作為一種精神現象〉,《走‧路》專書,作者:黃武雄、小野、石計生、吳文翠等,台北:左岸出版社。
  • 石計生,2007.08,人文社會地理資訊系統:理論‧資料‧與MajorGIS解析(增訂三版),台北:儒林。
  • 石計生,2007.06,社會地理資訊系統與ArcGIS研究教學,台北:儒林。
  • 石計生,2007.03,閱讀魅影:尋找後班雅明精神,台北:群學出版社。
  • 石計生,2006.09,社會科學研究與SPSS資料分析:台灣資料庫的應用(二版),台北:雙葉。(與羅清俊、曾淑芬、黃慧琦、邱曉婷合著)
  • 石計生,2007.06,地理資訊系統社會學,社會學:多元、正義、民主與科技風險,台灣大學國家發展研究所出版頁163-179。
  • 石計生,2006.04,完整的他者(奎澤石頭詩集IV),台北:唐山出版社。
  • 石計生,2006.03,就在木棉花開時(散文集),台北:聯合報系歷史智庫出版。
  • 石計生,2006.01,社會學理論–從古典到現代之後,台北:三民書局出版。
  • 石計生,2005.10,成為抒情的理由(散文隨筆集),台北:寶瓶文化出版。
  • 石計生,2004.10,人文社會地理資訊系統—理論、資料與Major GIS解析(增訂二版),台北:儒林。(編著)
  • 石計生,2003.11,從德里達的“解構”到保羅‧德‧曼的“解構”,收錄於馮俊主編,後現代主義哲學講演錄,北京:商務印書館,頁375-391。
  • 石計生,2003.10,時光飛逝(奎澤石頭詩集III),台北:唐山,373頁。
  • 石計生,2003.09,藝術與社會:閱讀班雅明的美學啟迪,台北 :左岸文化,262頁。(2003年博客來網路書店藝術類新書熱門暢銷書排行榜前一百名)
  • 石計生,2003.02,意義的挑釁:德希達與保羅.德曼的解構及其對當代社會的文化解釋探究,收錄於黃瑞祺主編,後學新論:後現代/後結構/ 後殖民,台北:左岸文化,頁143-188。
  • 石計生,2003.02,人文社會地理資訊系統—理論、資料與Major GIS解析,台北:儒林。(編著)
  • 石計生,2003.02,社會科學研究與SPSS資料分析:台灣資料庫的應用,台北:雙葉。(與羅清俊、曾淑芬、黃慧琦、邱曉婷合著)
  • 石計生,2001.09,地理資訊系統社會學,台北:儒林 。(編著)
  • 石計生,2001.09,海底開滿了花(奎澤石頭詩集II),台北:唐山。
  • 石計生,2000.12,宜蘭縣社會經濟發展史,宜蘭:宜蘭縣政府 。
  • 石計生,2000.09,馬克思理論與當代社會制度,台北:揚智。
  • 石計生,1999,在芝加哥微光中(奎澤石頭詩集I),台北:書林。
  • 石計生,1999,1999 A Regional and Global Perspective on Taiwan`s Urbanization: Desakotasi in I-Lan County, 1895-1994. Ph. D. thesis, Department of Sociology, University of Illinois at Chicago, IL: Chicago, USA.
  • 石計生,1993,意識形態與台灣教科書—對於台灣中小學社會科學教科書之研究,台北:前衛。

專業參與

  • 石計生,2011.08.27-09.05:應上海復旦大學歷史地理研究所前所長張曉虹教授之邀至該校進行訪問講學,並以「台灣歌謠作為一種時代盛行曲:音樂臺北的上海及諸混血魅影(1930-1960)」為題,於該所學術會議廳發表學術公開演講。
  • 石計生,2011.08.31:應上海大學城市社會文化地理研究所所長孫秀林教授之邀,以「虛擬城市文化:寶島歌王洪一峰音樂博物館數位典藏」為題,於上海大學該所會議廳發表學術公開演講。
  • 石計生,2010.07.04-20:以南京大學社會系兼任副教授身份,石計生教授於該系研究所暑期班開設為期三週的「城市文化研究」課程,石教授從城市空間,城市流行音樂與城市中的身體等三大面向進行城市文化研究探究,並將帶領學生在南京市進行城市空間與文化田野踏查。
  • 石計生,2009.11.27:應北京大學歷史地理研究所所長唐曉峰教授之邀,以「城市空間與歷史中的台灣流行歌—一個地理資訊系統的應用」為題,於北京大學逸夫貳樓學術會議廳發表學術公開演講。
  • 石計生,20090604,於台北紫藤廬美學策進會講座,以「再現1960:紀露霞『混血歌』考據與大台北城的『媒介迴路』空間」為題,發表專題演講。
  • 石計生20081212,應邀至國際音樂學術研討會:「東亞的78轉時代: 錄音與連結式現代性」(International SeminarThe Age of the 78s in East Asia: Sound Recordings and Associative Modernity)第二場(Session II)Taiwanese Music and Popular Songs on the 78s (七十八轉唱片中的臺灣音樂及流行歌曲)擔任會議主持人,國立台灣大學文學院與日本國立人間文化研究機構共同主辦,會議地點:國立台灣大學文學院會議室
  • 石計生,2008.11.30,石計生教授應邀至北京大學社會系舉辦的「轉型中的的中國社會與中國社會學」國際學術研討會,發表「從音樂社會學看台灣社會轉型」論文,探究通過流行音樂轉換(歌謠→民歌)表現出來的國民政府的社會控制與社會轉型,音樂人主體如何面對等問題,並探究校園民歌怎樣流傳於兩岸的文化向度的音樂社會學研究論文。期間,為執行石教授之國科會97研究計畫「音樂作為一種鄉愁:台灣歌謠與民歌流行轉換之社會研究」案,同時亦深度訪談多位重要學者與音樂人,包括北京中央音樂學院的音樂系主任張伯瑜教授,北京大學藝術學院劉小龍教授,和著名作家《臺灣現代民歌三十年》作者重返61號公路等。
  • 石計生,2008年10月28日,應國立交通大學音樂所演講之邀,以「 社會環境中的感覺建構:從紀露霞台灣歌謠音樂研究談起(Sense-making within the Social Setting: Research on the Chi Lu-shiya`s Taiwan Popular Music)」至交大音樂研究所演講教室進行演講 。
  • 石計生, 2008年10月15日,應邀至 國立台灣大學校園文化資產詮釋課程授課,以「文學中的台大:談我的80年代的校園創作與記憶」至台大普通教室504講課。
  • 石計生,2008.06.02-07,應南京大學人文社會科學高級研究院周憲院長之邀,至南京大學進行訪問講學。期間,將發表四場關於福柯理論、藝術社會學、城市空間與現代性和道家身體等相關議題進行演講,並和該校的大學生、研究生與教授進行討論、交流與參訪。亦獲南京大學社會系聘為兼任副教授,並由該系副主任成伯清頒發南京大學校徽,該系系主任周曉紅頒發該校陳駿校長簽署的正式聘函(2008-2013)。石教授將於暑假期間至該系主授後現代空間理論、城市社會學與本雅明美學等碩博士專題討論課程。 
  • 石計生,2008.04.02,應輔仁大學社會系張漢音主任之邀,以「道家身體:從浪漫求死到保守求生」為題,在輔仁大學社會系羅耀拉樓3F演講廳進行公開學術演講。
  • 石計生,2008.03.22,應邀至誠品書店信義旗艦店3F廣場Forum以「浪漫求死–莫札特的藝術秘密」為題,進行公開藝術社會學演講。
  • 石計生,2008.03.01,獲第二屆蔡瑞月舞蹈節文化論壇【藝術與救贖-為暗夜點燈的舞者】之邀,以「那玫瑰所指向的慈悲空間-紀露霞、蔡瑞月和蕭渥廷」為題發表專題研講。
  • 石計生,2008.02.19,獲中央警察大學犯罪防制系暨研究所之邀,以「社會地理資訊系統:以桃園犯罪地景為例」為題發表專題研講。
  • 石計生,2007.11.25,獲由台灣社會學會、台大社會系等共同舉辦的「2007年台灣社會學會年會暨論文研討會」邀請,擔任「知識/藝術」議題林端教授之論文〈藝術家的創造力:社會學家的看法〉的評論人。
  • 石計生,2007.11.17,獲由台灣資訊社會研究學會、交通大學客家文化學院傳播科技學系 、元智大學資訊社會學研究所等共同舉辦的「2007年台灣資訊社會研究學會年會暨論文研討會」邀請,擔任「網路文化與理論」議題組別的會議主持人。
  • 石計生教授應北京中國農業大學生態與工程系、資源科學與信息技術中心之邀,於2007.10.25,以「從機械複製至數位複製–生態文化與社會GIS」為題,對該校師生發表專題演講。
  • 石計生教授接受中國時報訪問,標題「 研究紀露霞的歌 找回遺忘年代」,內容為石老師以紀露霞為主題,通過國科會為期一年的研究計畫,創下國內第一位台灣民謠歌唱家,成為學術研究對象的研究案。該文並於2007年10月15日刊出。
  • 石計生,2007.10. 22. 應北京大學學生會之邀,於10.22晚,以「面向未來社會學:社會地理資訊系統的理論與構成」為題,對北大學生發表專題演講。
  • 石計生,2007.10. 21. 將於北京圓明園旁的單向街書店,以「藝術家的精神性:一個後班雅明式探索」為題,對北京知識份子與市民發表演講。
  • 石計生教授於2007年10月15日,接受台灣八大電視台訪問,內容為石老師國科會研究案,關於台灣歌謠演唱家紀露霞的音樂與台灣社會變遷研究,並於當天晚間新聞播出。
  • 石計生教授於七月十二十五日,應北京市社會科學院之邀,以「社會地理訊息系統」為主題,發表專題演講。
  • 石計生教授於七月十一日,應中國農業大學趙旭東教授主持之「鄉土研究講座」之邀,以「社會地理訊息系統的理論與實踐」為主題,發表專題演講。
  • 石計生教授於七月八日至八月六日,應北京大學社會系之邀,於西側門勺園住校講學。本次講學將以「全球化研究」為主軸,兼及「社會地理資訊系統」與「城市社會學」等相關主題,將與北大師生進行廣泛討論與交流。
  • 石計生教授於2007年6月5日, 應邀至北京大學社會系,以「搭橋量與質–社會地理資訊系統(SocGIS)的方法論」為題,對師生發表公開演講。
  • 石計生教授將於2007年6月2日至6月6日, 至北京參與藝術研究研討會。本次會議是由中國藝術研究院舉辦的「非物質文化遺產保護中的田野考察工作方法」研討會。與會期間,石計生教授將以「田野調查的數位化技藝—以台北天母三玉宮的宮廟繞境為例 」題目發表,運用社會地理資訊系統(SocGIS)至藝術文化保存之範疇的過程與創新可能,以提升非物質文化遺產保護的質與量。
  • 2007.03.30,石計生教授應南京師範大學地理系資深教授,同時也是江蘇省GIS重點實驗室主任閭國年教授之邀,以「後現代空間與社會地理資訊系統」為題,在該校仙林校區北區k3-420教室發表專題演講。
  • 2007年3月29日至4月7日,應南京大學社會系之邀,以「藝術與社會的辯證:尋找後班雅明精神」(The Dialectics of Art and Society: In Search of the Post-Benjamin`s Spirit)為題發表系列學術演講四講,包括「班雅明精神:現代性、貨幣經濟與寓言詩學的城市實踐」、「全球化班雅明:《拱廊街計畫》及其跨文化啟迪」、「班雅明之後:「圓現象閱讀」方法建構」和「藝術與社會:經典案例閱讀」。另以「社會地理資訊系統(The SocGIS):探索與實踐」為題,闡述過去七年來在人文社會科學使用GIS的教學與研究經驗,從邊緣視角挖掘SocGIS的獨特性與發展性,戮力探索視覺化人文社會道路,發表專題演講。
  • 2007年3月19日,應扶輪社之邀,在台北府門扶輪社例會處發表專題演講,講題為:身體/後身體:存在危機與關於自我的後現代探究(Body/Post-body: Existential Crisis and a Post-modern Investigation of the Self)。
  • 2007年1月4日,接受英國廣播公司BBC訪問,談論台灣高鐵興建後的社會效應。詳見: http://news.bbc.co.uk/2/hi/asia-pacific/6230761.stm , The bullet train bites in Taiwan. By Caroline Gluck, BBC News, Taipei.
  • 2007年1月獲遴選為台灣資訊社會學會常務理事
  • 2006年12月,應台灣師範大學國文系之邀,石曉楓教授主持,在師大勤七樓國文系會議室發表專題演講,題為:公館/溫羅汀事件簿–視覺踏查的可能,並帶領師生沿著溫州街,羅斯福路和汀州路實地踏查。
  • 2006年12月27日,應國立新竹教育大學之邀,在該校講堂乙發表專題演講,講題為:知識前沿與城市空間文化觀察-黃皮膚在四處的行走:北京、上海、東京和台北。
  • 2006年12月20日,應中國文化大學「數位地球研究中心」之邀, 石計生 教授將至中國文化大學校菲華樓二樓 202會議室,以「社會地理資訊系統(The SocGIS): 探索與實踐 」發表公開專題演講。
  • 2006年12月,應朱銘美術館之邀,針對該館申請展法國藝術家洛倫‧拉剛跋(Laurent La Gamba)的「偽裝城市-洛倫‧拉剛跋個展」的裝置藝術進行評論。題目為:拉岡/跋:分裂自我的鏡像–評拉剛跋的偽裝裝置藝術(Lacan/a Postscript: The Mirror of Divided Self—On La Gamba ’s Procryptic Installation Art)。
  • 2006年12月9日,應朱銘美術館之邀, 石計生 教授在美術館針對法國裝置藝術家拉岡芭(Laurent La Gamba )的作品,進行公開評論演講。
  • 2006年10月28日,主持並與談東吳大學學術對談講座:「音樂與社會:紀露霞與消失的1960年代」。主辦單位:東吳大學社會學系;協辦單位:美學策進學會; 對談地點:台北紫藤廬茶館。
  • 2006年10月起,應邀擔任東吳大學「文學院人文社會研究室」召集人。
  • 2006年10月,應邀擔任由台灣資訊社會學所舉辦的「資訊社會的十年回顧與未來展望」之「地理資訊系統的研究與應用」部門場次的組織與主持人。
  • 2006年5月,應邀擔任由中央研究院、內政部、國家實驗室和中國文化大學所舉辦的「第四屆數位地球國際研討會」之「人文、社會與空間資訊」(Humanities, Social Science and Spatial Information)部門場次的主持人 。
  • 2005年11月14日, 應北京中國人民大學社會系之邀,以「地理資訊系統與社會學的研究」為題,發表公開演講。
  • 2005年11月9-16日, 應北京清華大學社會系之邀,進行短期講學。以「地理資訊系統與後現代空間」、「後現代地理學與都市重構」、「都市不平等與SocGIS的操作」、「後殖民理論與地理資訊系統的社會學遠景」等主題,進行社會學前沿的跨越理論,方法與應用的全方位的「清華六講」。
  • 2005年11月8日, 應上海復旦大學社會政策與發展研究院之邀,以「地理資訊系統的理論與應用」為題,發表公開演講。
  • 跨界/對話:2005年自然與人文空間資訊研討會大會專題演講者(keynote speaker)
  • 2004年7月,第十九屆太平洋區域科學國際會議東京日本大學年會「聖嬰現象衝擊、休閒/健康與城市消費地景」(El Nino Impact, Leisure/Health and Landscape Consumption in Cities )部門召集人
  • 2004年7月,第十九屆太平洋區域科學國際會議東京日本大學年會「資訊社會、城市空間與地理資訊系統」(Information Society, City Space and GIS )部門召集人
  • 2004年5月,社會學與地理資訊系統專題演講,第二屆數位地球國際研討會,中央研究院、國家實驗研究院與中國文化大學合辦,中國文化大學曉峰紀念館國際會議廳。
  • 2001年亞洲GIS東京大學年會(GIS ASIA) 「空間分析與人文社會科學」部門召集人
  • 「台北市士林區人文社會變遷研究GIS成果發表會」執行策劃人
  • 「第一屆自然與社會空間資訊應用研討會」社會組執行策劃人  
  • 東森電視台「社會追緝令」常任社會評論教授
  • 聯合報系「歷史月刊」特約專欄社會評論教授
  • 台北紫藤廬「美學與社會學」常駐演講教授
  • 《都市與計劃》審查委員
  • 行政院國家科學委員會自然科學發展處審查委員
  • 行政院國家科學委員會人文及社會科學發展處審查委員
  • 行政院研究發展考核委員會資訊管理委員會審查委員
  • 台北市政府原住民事務委員會審查委員
  • 台北市政府研究考核委員會審查委員
  • 《台大地理學報》審查委員(2008.10.16)
  • 《中央大學人文學報》審查人(2008.04.29)
  • 《世新大學人文社會學報》審查委員
  • 《東吳社會學報 》第十六期主編
  • 《政治與社會哲學評論》審查委員
  • 《政大公共行政學報》審查委員
  • 《台灣社會研究季刊》審查委員
  • 《資訊社會研究》審查委員
  • 《中華人文社會學報》審查委員
  • 《歐美研究》審查委員
  • 《文化研究》審查委員
  • 《師大學報》審查委員

其他 

  • 石計生,2007.10,奎澤石頭〈和平港畔不遠處的黃牛、星星與旅人〉、〈大王椰子〉、 〈嘉南平原〉和〈繞射的稻浪〉等詩作 ,入選由高雄縣政府文化局主編的《高雄縣國民中小學台灣文學讀本》。
  • 石計生,2006.12,蘭陽平原的兩月四十八日,《人民的力量》推薦序,黃煌雄策劃,台灣研究基金會執筆小組執筆,台北:玉山社出版。
  • 石計生,2006.12,死亡與永恆的辯證–從「人間系列–三軍」談朱銘的創作精神性,朱銘美術館季刊No.28,台北:朱銘美術館出版。
  • 石計生,2006.06,框架新都市步調與慢活的身心靈,台北市立圖書館,四季閱讀哲學,夏季號折頁推薦文。
  • 石計生,2006.01,請回到業已乾涸的人心(詩集評論),台北:聯合報〈讀書人〉。
  • 石計生,2005.06,靈性教育從小開始,華德福教育在台灣,誠品好讀,六月號,頁52-54。
  • 石計生,2004.12,不可解決的和解–這藝術與公民教育之間的道路,《21個藝術擁抱的姿勢》推薦序,永和社區大學策劃,台北:左岸出版社。
  • 石計生,2004.09,在海的遠處所見的《亮的天》,台北:〈聯合報〉讀書人,9月19日。  
  • 石計生,2004.03,布爾喬亞風格考–評彼得蓋伊的《史尼玆勒的世紀──布爾喬亞文化經驗一百年:中產階級文化的形成》,〈誠品好讀〉,台北:誠品書店,頁99。
  • 石計生,2003.11,就搭捷運,來到足堪閒逛的台北,台灣建築,11月號,頁63-66。
  • 石計生,2003.10,奎澤石頭作品選(詩三首),中華現代文學大系貳,台灣一九八九至二00二,詩卷(二),余光中總編輯,台北:九歌出版社,頁705-711。
  • 石計生,2003.08,所有固態的都飛舞融化—評《威瑪文化》,台北:〈聯合報〉讀書人,8月3日。
  • 石計生,2003.07,行禮如儀的超越–記雙谿文學獎,東吳大學第23屆雙溪現代文學獎得獎及入圍作品集刊序言,台北:東吳大學,頁1-2。
  • 石計生,2003.07,霹靂火V.S.野火(原題:流動的現實與「定錨」的超現實—以台灣霹靂火論龍應台的「文化精神分裂症」),台北 :〈中國時報〉人間副刊,挑戰龍應台系列,7月26日。
  • 石計生,2003.06,失落時光的海拋—記喬伊斯的生命與文學,永遠的都柏林人—喬伊斯的流幻之旅,左岸文化,頁7-12 。(書評)
  • 石計生口述、傅子豪撰述,2003.05,左手寫詩,右手做研究–東吳大學社會系助理教授石計生的求學故事, 人本教育札記,五月號,第167期,台北:人本教育基金會出版。
  • 石計生,2003.05,失落時光的海拋—記喬伊斯的生命與文學,台北:〈聯合報〉聯合副刊,5月23日。
  • 石計生,2002.05,全球化與蘇州發展的在地條件:吳江市的個案研究(2001.8-2002.7),行政院國科會專題計劃期中報告。

 

發表於 石計生教授介紹 | 發表迴響

歷屆研究助理群(至2012年)

Research Assistants:


Cha-hua Tsou 鄒佳樺 (PhD Candidate, 巴黎第十大學空間研究博士班)

Chang-Liang Spencer Chi 紀建良 (Ph.D., Graduate Institute of Building and Planning, National Taiwan University )

Ying-Ling Huang 黃映翎(PhD candidate, Graduate Institute of Building and Planning, National Taiwan University)

Wang-ting Chuo 邱婉婷(MA, Graduate Institute of Musicology, National Taiwan University)

Shi-hua Chu 朱思樺(MA , Department of Sociology, Soochow University)

Rou-yu Chou 周汝育(MA student, Department of Sociology, Soochow University )

Ji-jong Fang方志中 (MA, Department of Sociology, Soochow University )

Yi-wei Cheng陳翊威 (MA, Graduate School of Social Informatics, Yuan Ze University)

Ning-Shing Wu吳寧馨 (MA, Department of Sociology, Soochow University )

Fang-Ni Lui呂方妮 (MA, Department of Sociology, Soochow University )

Ze-chang LU劉擇昌 (Ph.D., Department of Crime Investigation, Central Police University )

Cha-Ling Ma馬嘉凌 (MA , Department of Sociology, Soochow University )

 

發表於 教授工作室成員 | 發表迴響

研究生-鄒佳樺

 

姓名:鄒佳樺
興趣:音樂、電影、踏青
研究興趣:GIS空間地理學
目前就讀巴黎第十大學空間研究博士班
發表於 教授工作室成員 | 發表迴響

石計生教授GIS教學歷史圖片(2000年於東吳大學外雙谿校區B502, H101教室)

發表於 SocGIS團隊 | 發表迴響

石計生教授應邀演講目錄(至2012年)

專業參與

  • 石計生,2011.08.27-09.05:應上海復旦大學歷史地理研究所前所長張曉虹教授之邀至該校進行訪問講學,並以「台灣歌謠作為一種時代盛行曲:音樂臺北的上海及諸混血魅影(1930-1960)」為題,於該所學術會議廳發表學術公開演講。
  • 石計生,2011.08.31:應上海大學城市社會文化地理研究所所長孫秀林教授之邀,以「虛擬城市文化:寶島歌王洪一峰音樂博物館數位典藏」為題,於上海大學該所會議廳發表學術公開演講。
  • 石計生,2010.07.04-20:以南京大學社會系兼任副教授身份,石計生教授於該系研究所暑期班開設為期三週的「城市文化研究」課程,石教授從城市空間,城市流行音樂與城市中的身體等三大面向進行城市文化研究探究,並將帶領學生在南京市進行城市空間與文化田野踏查。
  • 石計生,2009.11.27:應北京大學歷史地理研究所所長唐曉峰教授之邀,以「城市空間與歷史中的台灣流行歌—一個地理資訊系統的應用」為題,於北京大學逸夫貳樓學術會議廳發表學術公開演講。
  • 石計生,2009年06月04日,於台北紫藤廬美學策進會講座,以「再現1960:紀露霞『混血歌』考據與大台北城的『媒介迴路』空間」為題,發表專題演講。
  • 石計生,2008年12月12日,應邀至國際音樂學術研討會:「東亞的78轉時代: 錄音與連結式現代性」(International Seminar:The Age of the 78s in East Asia: Sound Recordings and Associative Modernity)之第二場(Session II):Taiwanese Music and Popular Songs on the 78s (七十八轉唱片中的臺灣音樂及流行歌曲)擔任會議主持人,國立台灣大學文學院與日本國立人間文化研究機構共同主辦,會議地點:國立台灣大學文學院會議室。
  • 石計生,2008.11.30,石計生教授應邀至北京大學社會系舉辦的「轉型中的的中國社會與中國社會學」國際學術研討會,發表「從音樂社會學看台灣社會轉型」論文,探究通過流行音樂轉換(歌謠→民歌)表現出來的國民政府的社會控制與社會轉型,音樂人主體如何面對等問題,並探究校園民歌怎樣流傳於兩岸的文化向度的音樂社會學研究論文。期間,為執行石教授之國科會97研究計畫「音樂作為一種鄉愁:台灣歌謠與民歌流行轉換之社會研究」案,同時亦深度訪談多位重要學者與音樂人,包括北京中央音樂學院的音樂系主任張伯瑜教授,北京大學藝術學院劉小龍教授,和著名作家《臺灣現代民歌三十年》作者重返61號公路等。
  • 石計生,2008年10月28日,應國立交通大學音樂所演講之邀,以「 社會環境中的感覺建構:從紀露霞台灣歌謠音樂研究談起(Sense-making within the Social Setting: Research on the Chi Lu-shiya`s Taiwan Popular Music)」至交大音樂研究所演講教室進行演講 。
  • 石計生, 2008年10月15日,應邀至 國立台灣大學校園文化資產詮釋課程授課,以「文學中的台大:談我的80年代的校園創作與記憶」至台大普通教室504講課。
  • 石計生,2008.06.02-07,應南京大學人文社會科學高級研究院周憲院長之邀,至南京大學進行訪問講學。期間,將發表四場關於福柯理論、藝術社會學、城市空間與現代性和道家身體等相關議題進行演講,並和該校的大學生、研究生與教授進行討論、交流與參訪。亦獲南京大學社會系聘為兼任副教授,並由該系副主任成伯清頒發南京大學校徽,該系系主任周曉紅頒發該校陳駿校長簽署的正式聘函(2008-2013)。石教授將於暑假期間至該系主授後現代空間理論、城市社會學與本雅明美學等碩博士專題討論課程。
  • 石計生,2008.04.02,應輔仁大學社會系張漢音主任之邀,以「道家身體:從浪漫求死到保守求生」為題,在輔仁大學社會系羅耀拉樓3F演講廳進行公開學術演講。
  • 石計生,2008.03.22,應邀至誠品書店信義旗艦店3F廣場Forum以「浪漫求死–莫札特的藝術秘密」為題,進行公開藝術社會學演講。
  • 石計生,2008.03.01,獲第二屆蔡瑞月舞蹈節文化論壇【藝術與救贖-為暗夜點燈的舞者】之邀,以「那玫瑰所指向的慈悲空間-紀露霞、蔡瑞月和蕭渥廷」為題發表專題研講。
  • 石計生,2008.02.19,獲中央警察大學犯罪防制系暨研究所之邀,以「社會地理資訊系統:以桃園犯罪地景為例」為題發表專題研講。
  • 石計生,2007.11.25,獲由台灣社會學會、台大社會系等共同舉辦的「2007年台灣社會學會年會暨論文研討會」邀請,擔任「知識/藝術」議題林端教授之論文〈藝術家的創造力:社會學家的看法〉的評論人。
  • 石計生,2007.11.17,獲由台灣資訊社會研究學會、交通大學客家文化學院傳播科技學系 、元智大學資訊社會學研究所等共同舉辦的「2007年台灣資訊社會研究學會年會暨論文研討會」邀請,擔任「網路文化與理論」議題組別的會議主持人。
  • 石計生教授應北京中國農業大學生態與工程系、資源科學與信息技術中心之邀,於2007.10.25,以「從機械複製至數位複製–生態文化與社會GIS」為題,對該校師生發表專題演講。
  • 石計生教授接受中國時報訪問,標題「 研究紀露霞的歌 找回遺忘年代」,內容為石老師以紀露霞為主題,通過國科會為期一年的研究計畫,創下國內第一位台灣民謠歌唱家,成為學術研究對象的研究案。該文並於2007年10月15日刊出。
  • 石計生,2007.10. 22. 應北京大學學生會之邀,於10.22晚,以「面向未來社會學:社會地理資訊系統的理論與構成」為題,對北大學生發表專題演講。
  • 石計生,2007.10. 21. 將於北京圓明園旁的單向街書店,以「藝術家的精神性:一個後班雅明式探索」為題,對北京知識份子與市民發表演講。
  • 石計生教授於2007年10月15日,接受台灣八大電視台訪問,內容為石老師國科會研究案,關於台灣歌謠演唱家紀露霞的音樂與台灣社會變遷研究,並於當天晚間新聞播出。
  • 石計生教授於七月十二十五日,應北京市社會科學院之邀,以「社會地理訊息系統」為主題,發表專題演講。
  • 石計生教授於七月十一日,應中國農業大學趙旭東教授主持之「鄉土研究講座」之邀,以「社會地理訊息系統的理論與實踐」為主題,發表專題演講。
  • 石計生教授於七月八日至八月六日,應北京大學社會系之邀,於西側門勺園住校講學。本次講學將以「全球化研究」為主軸,兼及「社會地理資訊系統」與「城市社會學」等相關主題,將與北大師生進行廣泛討論與交流。
  • 石計生教授於2007年6月5日, 應邀至北京大學社會系,以「搭橋量與質–社會地理資訊系統(SocGIS)的方法論」為題,對師生發表公開演講。
  • 石計生教授將於2007年6月2日至6月6日, 至北京參與藝術研究研討會。本次會議是由中國藝術研究院舉辦的「非物質文化遺產保護中的田野考察工作方法」研討會。與會期間,石計生教授將以「田野調查的數位化技藝—以台北天母三玉宮的宮廟繞境為例 」題目發表,運用社會地理資訊系統(SocGIS)至藝術文化保存之範疇的過程與創新可能,以提升非物質文化遺產保護的質與量。
  • 2007.03.30,石計生教授應南京師範大學地理系資深教授,同時也是江蘇省GIS重點實驗室主任閭國年教授之邀,以「後現代空間與社會地理資訊系統」為題,在該校仙林校區北區k3-420教室發表專題演講。
  • 2007年3月29日至4月7日,應南京大學社會系之邀,以「藝術與社會的辯證:尋找後班雅明精神」(The Dialectics of Art and Society: In Search of the Post-Benjamin`s Spirit)為題發表系列學術演講四講,包括「班雅明精神:現代性、貨幣經濟與寓言詩學的城市實踐」、「全球化班雅明:《拱廊街計畫》及其跨文化啟迪」、「班雅明之後:「圓現象閱讀」方法建構」和「藝術與社會:經典案例閱讀」。另以「社會地理資訊系統(The SocGIS):探索與實踐」為題,闡述過去七年來在人文社會科學使用GIS的教學與研究經驗,從邊緣視角挖掘SocGIS的獨特性與發展性,戮力探索視覺化人文社會道路,發表專題演講。
  • 2007年3月19日,應扶輪社之邀,在台北府門扶輪社例會處發表專題演講,講題為:身體/後身體:存在危機與關於自我的後現代探究(Body/Post-body: Existential Crisis and a Post-modern Investigation of the Self)。
  • 2007年1月4日,接受英國廣播公司BBC訪問,談論台灣高鐵興建後的社會效應。詳見: http://news.bbc.co.uk/2/hi/asia-pacific/6230761.stm , The bullet train bites in Taiwan. By Caroline Gluck, BBC News, Taipei.
  • 2007年1月獲遴選為台灣資訊社會學會常務理事
  • 2006年12月,應台灣師範大學國文系之邀,石曉楓教授主持,在師大勤七樓國文系會議室發表專題演講,題為:公館/溫羅汀事件簿–視覺踏查的可能,並帶領師生沿著溫州街,羅斯福路和汀州路實地踏查。
  • 2006年12月27日,應國立新竹教育大學之邀,在該校講堂乙發表專題演講,講題為:知識前沿與城市空間文化觀察-黃皮膚在四處的行走:北京、上海、東京和台北。
  • 2006年12月20日,應中國文化大學「數位地球研究中心」之邀, 石計生 教授將至中國文化大學校菲華樓二樓 202會議室,以「社會地理資訊系統(The SocGIS): 探索與實踐 」發表公開專題演講。
  • 2006年12月,應朱銘美術館之邀,針對該館申請展法國藝術家洛倫‧拉剛跋(Laurent La Gamba)的「偽裝城市-洛倫‧拉剛跋個展」的裝置藝術進行評論。題目為:拉岡/跋:分裂自我的鏡像–評拉剛跋的偽裝裝置藝術(Lacan/a Postscript: The Mirror of Divided Self—On La Gamba ’s Procryptic Installation Art)。
  • 2006年12月9日,應朱銘美術館之邀, 石計生 教授在美術館針對法國裝置藝術家拉岡芭(Laurent La Gamba )的作品,進行公開評論演講。
  • 2006年10月28日,主持並與談東吳大學學術對談講座:「音樂與社會:紀露霞與消失的1960年代」。主辦單位:東吳大學社會學系;協辦單位:美學策進學會; 對談地點:台北紫藤廬茶館。
  • 2006年10月起,應邀擔任東吳大學「文學院人文社會研究室」召集人。
  • 2006年10月,應邀擔任由台灣資訊社會學所舉辦的「資訊社會的十年回顧與未來展望」之「地理資訊系統的研究與應用」部門場次的組織與主持人。
  • 2006年5月,應邀擔任由中央研究院、內政部、國家實驗室和中國文化大學所舉辦的「第四屆數位地球國際研討會」之「人文、社會與空間資訊」(Humanities, Social Science and Spatial Information)部門場次的主持人 。
  • 2005年11月14日, 應北京中國人民大學社會系之邀,以「地理資訊系統與社會學的研究」為題,發表公開演講。
  • 2005年11月9-16日, 應北京清華大學社會系之邀,進行短期講學。以「地理資訊系統與後現代空間」、「後現代地理學與都市重構」、「都市不平等與SocGIS的操作」、「後殖民理論與地理資訊系統的社會學遠景」等主題,進行社會學前沿的跨越理論,方法與應用的全方位的「清華六講」。
  • 2005年11月8日, 應上海復旦大學社會政策與發展研究院之邀,以「地理資訊系統的理論與應用」為題,發表公開演講。
  • 跨界/對話:2005年自然與人文空間資訊研討會大會專題演講者(keynote speaker)
  • 2004年7月,第十九屆太平洋區域科學國際會議東京日本大學年會「聖嬰現象衝擊、休閒/健康與城市消費地景」(El Nino Impact, Leisure/Health and Landscape Consumption in Cities )部門召集人
  • 2004年7月,第十九屆太平洋區域科學國際會議東京日本大學年會「資訊社會、城市空間與地理資訊系統」(Information Society, City Space and GIS )部門召集人
  • 2004年5月,社會學與地理資訊系統專題演講,第二屆數位地球國際研討會,中央研究院、國家實驗研究院與中國文化大學合辦,中國文化大學曉峰紀念館國際會議廳。
  • 2001年亞洲GIS東京大學年會(GIS ASIA) 「空間分析與人文社會科學」部門召集人
發表於 教授應邀演講, 未分類 | 發表迴響